View Lithospheric Evolution of the Pre- and Early Andean Convergent Margin, Chile

Total Page:16

File Type:pdf, Size:1020Kb

View Lithospheric Evolution of the Pre- and Early Andean Convergent Margin, Chile Gondwana Research 80 (2020) 202–227 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR Focus Review Lithospheric evolution of the Pre- and Early Andean convergent margin, Chile Verónica Oliveros a,⁎, Paulina Vásquez b, Christian Creixell b, Friedrich Lucassen c, Mihai N. Ducea d,e, Isabella Ciocca a, Javiera González a, Mauricio Espinoza a, Esteban Salazar b, Felipe Coloma b, Simone A. Kasemann c a Departamento Ciencias de la Tierra, Universidad de Concepción, Casilla 160-C, Concepción, Chile b Servicio Nacional de Geología y Minería, Av. Santa María 104, Santiago, Chile c Faculty of Geosciences and MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany d Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA e Faculty of Geology and Geophysics, University of Bucharest, 010041 Bucharest, Romania article info abstract Article history: The proto-Andean and Early Andean evolution of the southwestern Gondwana margin comprises three stages Received 29 March 2019 that differ in their magmatic evolution and deformational style: the Gondwana cycle (~330–280 Ma), the Pre- Received in revised form 20 November 2019 Andean stage (~280–210 Ma) and the Early Andean Cycle (210–100 Ma). These stages have been traditionally Accepted 30 November 2019 interpreted as the upper crustal response to changes in the tectonic setting which include: Cordilleran-style con- Available online 10 December 2019 tinental arc (Gondwana cycle), orogenic collapse and possibly slab break-off that led to continental rifting and Editor: M. Santosh extensive crustal melting (Pre-Andean stage), and subsequent subduction re-initiation in oceanic arc-style con- text (Early Andean cycle). The petrological and geochemical characteristics of Carboniferous to Jurassic igneous rocks from this region how- ever do not support the described model. Elemental and Sr-Nd-Pb isotopic data of 86 samples, along with a com- pilation of ~1230 samples from the literature suggest that subduction was the most likely process by which the magmatic record was generated. Sub-alkaline affinities, LILE enrichment over HFSE, Nb\\Ta troughs, porphyritic textures and hornblende- and biotite-bearing lithologies are present in all studied units, whereas isotopes sug- gest that magma sources are a mixture of depleted mantle and variable contribution from the continental crust. Even though the aforementioned features are common to all igneous rocks, some changes point to a decline in the contribution of crustal/lithospheric sources to the magmatism with time. Thus, SiO2,LaN/YbN and 87 86 Sr/ Srinitial exhibit a systematic decrease from ~285 to 150 Ma, whereas the εNdinitial parameter increases in the same period. These changes were accompanied by the shift from dominant compressional (Carboniferous-Early Permian) to transtentional (Middle Permian-Jurassic) stresses in the upper crust, suggesting that the margin went from ad- vancing to retreating due to Pangea reorganization and break-up. Following a potential flat slab event, slab roll-back may have induced extension in the upper crust and lithospheric loss as a consequence of delamination or thermal erosion. © 2019 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. Contents 1. Introduction.............................................................. 203 2. Geologicalsetting............................................................ 203 2.1. Gondwanacycle(LateCarboniferousto~285Ma).......................................... 203 2.2. Pre-Andeanstage(~285MatoRhaetian).............................................. 204 2.3. EarlyAndeancycle(Jurassic)................................................... 208 3. Samplesandmethods.......................................................... 208 4. Petrography.............................................................. 208 ⁎ Corresponding author. E-mail address: [email protected] (V. Oliveros). https://doi.org/10.1016/j.gr.2019.11.002 1342-937X/© 2019 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. V. Oliveros et al. / Gondwana Research 80 (2020) 202–227 203 4.1. Gondwanacycle......................................................... 208 4.2. Pre-Andeanstage........................................................ 208 4.3. EarlyAndeancycle........................................................ 214 5. ElementalandSr-Nd-Pbisotopegeochemistry............................................... 214 6. Discussion............................................................... 216 6.1. AgeochemicalperspectivefortheevolutionoftheSWGondwanamargin:continuoussubductionfromCarboniferoustoJurassic?..... 216 7. TectonicevolutionoftheAndeanconvergentmarginbetween18°and40°S................................. 219 8. LithosphericevolutionoftheEarlyAndes................................................. 223 9. Conclusions.............................................................. 223 Acknowledgements............................................................. 224 References................................................................. 224 1. Introduction 2006; Oliveros et al., 2007; Pichowiak et al., 1990), the inferred onset of this subduction process is much less clear. On the other hand, recent The continental margin of southwestern South America has been pe- global reconstructions of plate motion back to the Devonian, suggest riodically active since the Early Paleozoic, as early as the Cambrian that Southwestern Gondwana would have been a convergent margin (Escayola et al., 2007), but certainly since the Early Carboniferous (e.g. from the Carboniferous to the Jurassic, and would have maintained Bahlburg et al., 2009; Charrier et al., 2007, 2014; Mpodozis and this character after supercontinent break-up (Müller et al., 2016; Riel Ramos, 1989; Willner et al., 2008). Two orogenic cycles, the Early et al., 2018; Young et al., 2019). A reappraisal of the classic model for Carboniferous-Early Permian Gondwana cycle and the Jurassic to recent the Late Paleozoic-Early Mesozoic evolution of the margin seems thus Andean cycle, both separated by the Pre-Andean stage, from the Middle necessary at this point. Permian to Late Triassic (Charrier et al., 2007) have been widely pro- The modern forearc region of north-central Chile (22°-30°S) pre- posed in the southern central Andes of north and central Chile between serves the geological record from three stages mentioned above (Gond- the Pacific coast and the border region to Argentina (e.g. Coira et al., wana cycle, Pre-Andean stage and Andean cycle) (Fig. 1). Remarkably 1982; Ruiz et al., 1965; Vicente, 1975). Published research indicates large volumes of volcanic, plutonic and sedimentary rocks of Carbonif- that both cycles differ mostly in their magmatic products and tectonic erous to Early Cretaceous ages are exceptionally well exposed due to regime. While the Gondwanan cycle involves, beside the mantle source, prevalent arid to semiarid climatic conditions. Consequently, this area relevant amounts of crustal additions to arc magmatism in a compres- is suitable for a large temporal scale study of the magmatic evolution sive tectonic setting (e.g. Hervé et al., 2014; Lucassen et al., 1999; of the continental margin, in order to get a more detailed image of the Mpodozis and Ramos, 1989), the Andean Cycle is dominated by mantle tectonic regime associated to the transition between the Gondwana additions to magmatism (Lucassen et al., 2006; Oliveros et al., 2007; and Andean cycles. Rossel et al., 2013) in a variable tectonic setting, from dominantly exten- In this work, we present newly acquired elemental and Sr-Nd-Pb sional/transtensional in the Jurassic-early Cretaceous, to compressive isotopic data for volcanic and plutonic rocks of mainly Triassic age and transpressive since the Late Cretaceous (Arriagada et al., 2006; cropping out in northern Chile between 25° and 30° S, along with a Charrier et al., 2014; Pichowiak et al., 1990; Scheuber et al., 1994). In comprehensive compilation of stratigraphic data and structural rela- this region, as often is the case with subduction-related magmatic arcs tionship of the geological units of this period. The geochemical data elsewhere in the geologic archive, the main set of tools used for identi- are contrasted to a database of ~1050 geological samples from igneous fying past tectonics environments comes primarily from the geochemis- units of Carboniferous to Jurassic age, cropping out between 18° and try of magmatic rocks themselves. 40°S in Chile and western Argentina (Fig. 1), in order to unravel the tec- This study focuses on the tectonic and magmatic evolution associ- tonic evolution of the continental lithosphere during this time span. ated to the period in between the two orogenic cycles, from Middle Permian to Late Triassic times, which is still a subject of debate. The 2. Geological setting time span of this stage is bracketed in between the initial phases of the Choiyoi magmatism, at ~285 Ma (Sato et al., 2015), and the begin- The Andean region in northern Chile, between 22° and 30°S features ning of the Andean subduction at the Triassic-Jurassic boundary three important morphostructural units where Paleozoic and Mesozoic (Charrier et al., 2007). The classic interpretation of the Choiyoi units crop out: the Coastal Cordillera, Frontal Cordillera (27°30′ -30°’00′ magmatism and its tectonic setting includes orogenic
Recommended publications
  • Geodynamics of Late Carboniferous–Early Permian Forearc in North Chile (28°30′–29°30′S)
    Research Article Journal of the Geological Society Published Online First doi:10.1144/jgs2016-010 Geodynamics of Late Carboniferous–Early Permian forearc in north Chile (28°30′–29°30′S) C. Creixell1*, V. Oliveros2, P. Vásquez1, J. Navarro3, D. Vallejos2, X. Valin2, E. Godoy4 & M. N. Ducea5,6 1 Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia, Santiago, Chile 2 Departamento Ciencias de la Tierra, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile 3 Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 4 Tehema Consultores Geológicos, Virginia Subercaseaux 4100, Pirque, Santiago, Chile 5 Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA 6 Universitatea Bucaresti, Facultatea de Geologie Geofizica, Strada N. Balcescu Nr 1, Bucuresti, Romania * Correspondence: [email protected] Abstract: A large section of the Late Palaeozoic forearc is exposed along the coastal ranges of north–central Chile (28°–29° 30′S). This is characterized by three lithotectonic units: (1) the Punta de Choros Metamorphic Complex (basal accretion series), composed mostly of micaschists and metabasites; (2) the Chañaral Epimetamorphic Complex (frontal accretion series), formed by metaturbidites and metasediments; (3) the Llano del Chocolate Beds (forearc basin deposits), composed of a sedimentary sequence of clastic sedimentary rocks with minor limestones and acidic volcanic rocks. Within the basal accretion series, two distinctive blocks of garnet-bearing schists with amphibolite-facies metamorphism have been preserved, recording early stages of the subduction system. The stratigraphic record and the U–Pb dating of igneous (291–318 Ma) and detrital zircons (maximal deposition ages between 273 and 292 Ma) in the forearc basin deposits, coupled with 40Ar/39Ar ages for metamorphic rocks (319–280 Ma), indicate that forearc sedimentation was broadly contemporaneous with metamorphism and exhumation of the basal accretion series.
    [Show full text]
  • Burdigalian Deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, Depositional Environment and Vertebrate Fossils
    Andean Geology 40 (3): 458-489, September, 2013 Andean Geology doi: 10.5027/andgeoV40n3-a0410.5027/andgeoV40n3-a?? formerly Revista Geológica de Chile www.andeangeology.cl Burdigalian deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, depositional environment and vertebrate fossils J. Enrique Bostelmann1, 2, Jacobus P. Le Roux3, Ana Vásquez3, Néstor M. Gutiérrez3, José Luis Oyarzún4, Catalina Carreño3, Teresa Torres5, Rodrigo Otero2, Andrea Llanos5, C. Mark Fanning6, Francisco Hervé3, 7 1 Museo Nacional de Historia Natural, 25 de Mayo 582, Montevideo, Uruguay. [email protected] 2 Red Paleontológica U-Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Avda. Las Palmeras 3425, Ñuñoa, Santiago,Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Centro de Excelencia en Geotermia de los Andes, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 4 Callejón Pedro Méndez, Huerto N° 112, Puerto Natales, Chile. [email protected] 5 Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Avda. Santa Rosa N° 11315, La Pintana, Santiago, Chile. [email protected]; [email protected] 6 Research School of Earth Sciences, The Australian National University, Building 142 Mills Road, ACT 0200, Canberra, Australia. [email protected] 7 Escuela de Ciencias de la Tierra, Universidad Andrés Bello, Salvador Sanfuentes 2357, Santiago, Chile. ABSTRACT. A succession of marine and continental strata on the southern flank of Cerro Cono in the Sierra Baguales, northeast of Torres del Paine, can be correlated with stratigraphic units exposed along the southern border of the Lago Argentino region in Santa Cruz Province, Argentina.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • Redalyc.Geochemistry of Permian to Triassic Igneous Rocks From
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Coloma, Felipe; Valin, Ximena; Oliveros, Verónica; Vásquez, Paulina; Creixell, Christian; Salazar, Esteban; Ducea, Mihai N. Geochemistry of Permian to Triassic igneous rocks from northern Chile (28º-30º15’S): Implications on the dynamics of the proto-Andean margin Andean Geology, vol. 44, núm. 2, mayo, 2017, pp. 147-178 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173951096003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 44 (2): 147-178 . May, 2017 Andean Geology doi: 10.5027/andgeoV44n2-a03 www.andeangeology.cl Geochemistry of Permian to Triassic igneous rocks from northern Chile (28º-30º15’S): Implications on the dynamics of the proto-Andean margin Felipe Coloma 1, Ximena Valin 2, *Verónica Oliveros 2, Paulina Vásquez 1, Christian Creixell 1, Esteban Salazar 1, Mihai, N. Ducea 3,4 1 eco aconal de Geologa y Mnea, Ada. ana Maa 0104, anago, le. el e.colo a enageo n.cl alna.ae enageo n.cl c an.ceell enageo n.cl eean.alaa enageo n.cl 2 e aa eno enca de la ea, nedad de once cn, co a a 120, alla 10-, once cn, le. oleo dec.cl ena.aln g al.co e a en o Geocence, ney o Aona, con, A 8721, A.
    [Show full text]
  • IV Simposio Paleontología En Chile, Universidad Austral De Chile, Valdivia 2014 1
    IV Simposio Paleontología en Chile, Universidad Austral de Chile, Valdivia 2014 1 M2 Gonfoterio ((NNotiomastodonotiomastodon platensis),), Pleistoceno,Pleistoceno, LosLos RíosRíos 2 IV Simposio Paleontología en Chile, Universidad Austral de Chile, Valdivia 2014 IV Simposio Paleontología en Chile, Universidad Austral de Chile, Valdivia 2014 3 Libro de Resúmenes IV Simposio Paleontología en Chile Valdivia 8 al 10 de octubre Editores: Karen Moreno, Sven Nielsen, Ana Abarzúa, Nathalie Silva y Felipe Leiva. La imagen corresponde a un molar M3 de Gomphotheriidae de la localidad de Futrono. Fotografía tomada por Alejandro Sotomayor. Este libro es una instantánea del que hacer paleontológico en Chile, una ciencia que comienza a tomar revuelo gracias a las contribuciones de nuestros cada vez más numerosos colegas. Agradecemos además a la Facultad de Ciencias de la UACh por tomar como propia la misión de desarrollar esta área y a todos los auspiciadores del IV Simposio Paleontología en Chile : - WReichmann, - URedes, Universidad de Chile, - Instituto de Ciencias Ambientales y Evolutivas UACh, - Instituto de Conservación, Biodiversidad y Territorio, UACh - Escuela de Geología,UACh - Escuela de Graduados de la Facultad de Ciencias, UACh - Dirección de Investigación y Desarrollo, UACh - Dirección de Postgrado, UACh - Vicerrectoría Académica, UACh 4 IV Simposio Paleontología en Chile, Universidad Austral de Chile, Valdivia 2014 IV Simposio Paleontología en Chile, Universidad Austral de Chile, Valdivia 2014 5 ERNESTO PÉREZ D’ANGELO, 1932-2013: Obituario, bibliografía y una lista de los taxones por él descritos Alfonso Rubilar R. Servicio Nacional de Geología y Minería, Sección Paleontología y Estratigrafía. e-mail: [email protected] Obituario Ernesto Pérez d’Angelo nació en Punta Arenas el 11 de septiembre de 1932.
    [Show full text]
  • Igneous Rock Associations 25. Pre-Pliocene Andean Magmatism in Chile Veronica Oliveros, Pablo Moreno-Yaeger Et Laura Flores
    Document généré le 28 sept. 2021 22:33 Geoscience Canada Journal of the Geological Association of Canada Journal de l’Association Géologique du Canada Igneous Rock Associations 25. Pre-Pliocene Andean Magmatism in Chile Veronica Oliveros, Pablo Moreno-Yaeger et Laura Flores Volume 47, numéro 1-2, 2020 Résumé de l'article Le magmatisme de type andin et le terme « andésite » sont souvent les URI : https://id.erudit.org/iderudit/1070937ar appellations utilisées pour décrire les résultats de la subduction de la DOI : https://doi.org/10.12789/geocanj.2020.47.158 lithosphère océanique sous un continent, et la roche typique formée. Bien que la chaîne des Andes occupe toute la marge ouest de l'Amérique du Sud, les Aller au sommaire du numéro roches les plus étudiées se trouvent dans le territoire chilien actuel et sont l'objet de cet article. Le magmatisme andin dans cette région s'est développé depuis la limite rhéto-hettangienne (environ 200 Ma) jusqu'à aujourd'hui et Éditeur(s) représente l'activité d'un arc magmatique continental persistant. Cet article a pour sujet les roches volcaniques, plutoniques et volcano-sédimentaires du The Geological Association of Canada pré-Pléistocène liées à l'arc qui couvrent la majeure partie de la masse continentale du Chili (entre la côte du Pacifique et les Hautes Andes) entre les ISSN latitudes de 18° et 50°S. Elles comprennent la majeure partie de la gamme de roches ignées sous-alcalines, du gabbro à la monzogranite et du basalte à la 0315-0941 (imprimé) rhyolite, mais sont dominées par des roches de type tonalite-granodiorite et 1911-4850 (numérique) andésite.
    [Show full text]
  • Geochemistry of Permian to Triassic Igneous Rocks from Northern Chile (28º-30º15’S): Implications on the Dynamics of the Proto-Andean Margin
    Andean Geology 44 (2): 147-178. May, 2017 Andean Geology doi: 10.5027/andgeoV44n2-a03 www.andeangeology.cl Geochemistry of Permian to Triassic igneous rocks from northern Chile (28º-30º15’S): Implications on the dynamics of the proto-Andean margin Felipe Coloma1, Ximena Valin2, *Verónica Oliveros2, Paulina Vásquez1, Christian Creixell1, Esteban Salazar1, Mihai, N. Ducea3,4 1 Servicio Nacional de Geología y Minería, Avda. Santa María 0104, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected] 2 Departamento Ciencias de la Tierra, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile. [email protected]; [email protected] 3 Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. [email protected] 4 Universitatea Bucuresti, Facultatea de Geologie Geofizica, Strada N. Balcescu Nr 1, Bucuresti, Romania * Corresponding author: [email protected] ABSTRACT. Permian to Triassic igneous rocks cropping out in the Coastal and Frontal cordilleras in northern Chile between 28º00’S and 30º15’S have long been interpreted to represent products of magmatism related to an extensional tectonic setting, either as the result of crustal anatexis or asthenospheric mantle decompression melting, in a passive continental margin. Eighty-six samples of plutonic (61) and volcanic (25) rocks from this region are characterized petrographically and geochemically. They are Permian to Early Jurassic in age, but the majority of the studied rocks correspond to the Lower to Middle Triassic Chollay Plutonic Complex, the volumetrically most important unit in the area. The rock samples have features typical of magmas derived from flux-induced melting of a depleted mantle such as: broad range of petrographic composition with predominance of intermediate to acid members, highly porphyrytic volcanic rocks, magnetite as the Fe-Ti oxide mineral phase, enrichment in LILE over HFSE, marked depletion in Nb, Ta, Ti, and P and moderate to no negative Eu anomalies.
    [Show full text]
  • Upper Cretaceous Intrusives in the Coastal Cordillera Near Valdivia: Forearc Magmatism Related to the Passage of a Triple Junction?
    Andean Geology 48 (1): 24-53. January, 2021 Andean Geology doi: 10.5027/andgeoV48n1-3062 www.andeangeology.cl Upper Cretaceous intrusives in the Coastal Cordillera near Valdivia: forearc magmatism related to the passage of a triple junction? Denisse de la Fuente1, *Óscar Figueroa1, Daniel Demaiffe2, Mauricio Mella3, Paul Duhart3, David Quiroz3, Jorge Muñoz4, Verónica Oliveros1 1 Departamento Ciencias de la Tierra, Universidad de Concepción, Casilla 160-C, Concepción, Chile. [email protected]; [email protected]; [email protected] 2 Université Libre de Bruxelles (ULB), DGES (CP 160/02), Laboratoire de Géochimie, 50 Av. F. D. Roosevelt, B-1050 Bruxelles, Belgium. [email protected] 3 Oficina Técnica Puerto Varas, Sernageomin, La Paz 406, Puerto Varas, Chile. [email protected]; [email protected]; [email protected] 4 Sernageomin, Santa María 0104, Santiago, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. Upper Cretaceous intrusives of limited extent crop out in the Coastal Cordillera near of Valdivia (39º48’ S), 100 km west of the main topographic divide of the Andean Cordillera. Given that plutonic rocks of the same age crop out at the same latitudes in the high Andes the coastal intrusives emplaced in a forearc position in the upper plate of a subduction setting. They correspond to hypabyssal intrusives displaying mainly porphyritic texture and lithological variations with microtonalites (minor), porphyritic microgranodiorites (main) and microgranites. They intrude the Upper Paleozoic-Triassic accretionary complex of the Bahia Mansa Metamorphic Complex. These intrusives, that comprise the Chaihuín Pluton and minor stocks of porphyritic felsic rocks, have calc-alkaline affinities with metaluminous and peraluminous character.
    [Show full text]
  • Lithospheric Loss in the Andean Convergent Margin During the Triassic: Geochemical Evidence from Igneous Rocks of Northern Chile (24°30’ – 30°00’S)
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Lithospheric loss in the Andean convergent margin during the Triassic: geochemical evidence from igneous rocks of northern Chile (24°30’ – 30°00’S). Verónica Oliveros*, Paulina Vásquez, Christian Creixell, Javiera González, Mauricio Espinoza, Friedrich Lucassen and Mihai. N. Ducea. Departamento Ciencias de la Tierra, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile Servicio Nacional de Geología y Minería, A. Santa María 0140, Providencia, Santiago, Chile. Isotope Geochemistry Laboratory, GEOMAR, Universität Bremen, Germany. Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. Universitatea Bucuresti, Facultatea de Geologie Geofizica, Strada N. Balcescu Nr 1, Bucuresti, Romania *Contact email: [email protected] Abstract. Several volcanic, volcano-sedimentary and continental basins in western Argentina and Chile during plutonic units cropping out in northern Chile between 24°30’ the Late Permian to Triassic period, supported the idea of and 30°S have been characterized petrographically and arrested subduction (Franzese and Spalleti, 2001; Kleiman geochemically. More than 50 new geochemical and isotopic and Japas, 2009). By the other hand, recent studies results from these units are presented and compared to proposed margin-parallel transpressional deformation of previous published data for Late Paleozoic to Late Jurassic the margin during the Triassic, associated to oblique igneous rocks. We propose that the continental margin subduction (Kato and Godoy, 2015). The lack of a underwent significant lithospheric loss, in a continuous recognizable chain of igneous units that could represent the subduction setting, at some time during the Permian to the Permian to Triassic magmatic arc is also seen as an Triassic.
    [Show full text]
  • Book Chapter
    Book Chapter Main characteristics of representative Andean stratabound ore deposits and general index of districts, mines, and occurrences (Printed lists of a data base) FONTBOTÉ, Lluís Reference FONTBOTÉ, Lluís. Main characteristics of representative Andean stratabound ore deposits and general index of districts, mines, and occurrences (Printed lists of a data base). In: Fontboté, L., Amstutz, G.C., Cardozo, M., Cedillo, E. & Frutos, J. (Eds.). Stratabound ore deposits in the Andes. Berlin : Springer, 1990. p. 777-815 Available at: http://archive-ouverte.unige.ch/unige:78117 Disclaimer: layout of this document may differ from the published version. 1 / 1 Main Characteristics of Representative Andean Stratabound Ore Deposits and General Index of Districts, Mines, and Occurrences (Printed Lists of a Data Base) L. Font bote 1 This appendix contains the following two parts: A) Printed lists of a data base with the main characteristics of about 180 represen­ tative Andean stratabound ore deposits. This information is arranged ( 1) from north to south, and (2) alphabetically. B) Index of about 520 districts, mines, ore occurrences, and prospects mentioned in the book, including also about 230 non-stratabound ore deposits. In all cases the same abbreviations have been used. For references of individual ore deposits see the respective contributions in this book. Additional sources of information are given in Fontbote (this Vol., pp. 79-110). A) Printed Lists of a Data Base with the Main Characteristics of Representative Andean Stratabound Districts, Mines, Ore Occurrences, and Prospects The lists contain synaptical information on about 180 representative Andean stratabound districts, mines, and ore occurrences. The following abbreviations are used: Name of the ore district, mine, ore occurrence, or prospect.
    [Show full text]
  • Stratigraphy and Age of Upper Jurassic Strata in North-Central Sonora, Mexico: Southwestern Laurentian Record of Crustal Extension and Tectonic Transition
    Making the Southern Margin of Laurentia themed issue Stratigraphy and age of Upper Jurassic strata in north-central Sonora, Mexico: Southwestern Laurentian record of crustal extension and tectonic transition David J. Mauel1,*, Timothy F. Lawton1, Carlos González-León2, Alexander Iriondo3, and Jeffrey M. Amato1 1Department of Geological Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA 2Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Apartado Postal 1039, Hermosillo , Sonora, 83000, México 3Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, 76230, México ABSTRACT derived from Middle Jurassic arc rocks region, refi ne temporal limits of Upper Jurassic and exhumed Caborcan basement, Paleo- strata and the unconformities bounding them, Stratigraphy, sedimentology, and geo- zoic–Lower Jurassic sedimentary cover, and and shed light on the stratigraphic relationships chronology of the Upper Jurassic Cucurpe Lower Cretaceous intermediate volcanic of the Glance Conglomerate, a synorogenic unit Formation in north-central Sonora, Mexico, rocks. Revised stratigraphy of the Cucurpe- inferred to establish the locations and timing of provide new insights into Late Jurassic rift- Tuape region indicates that several con- extensional basins in the region. This study was ing along the southwestern margin of Lau- glomeratic units, formerly interpreted as carried out within a main study area and within rentia. The Cucurpe Formation is the fi ll of Late Jurassic pull-apart basin deposits, are a broader general study area (Fig. 1) where the Altar-Cucurpe Basin. This basin devel- not of Late Jurassic age. comparative reconnaissance geology was com- oped upon attenuated crust of the Triassic– pleted.
    [Show full text]