Book Chapter

Total Page:16

File Type:pdf, Size:1020Kb

Book Chapter Book Chapter Main characteristics of representative Andean stratabound ore deposits and general index of districts, mines, and occurrences (Printed lists of a data base) FONTBOTÉ, Lluís Reference FONTBOTÉ, Lluís. Main characteristics of representative Andean stratabound ore deposits and general index of districts, mines, and occurrences (Printed lists of a data base). In: Fontboté, L., Amstutz, G.C., Cardozo, M., Cedillo, E. & Frutos, J. (Eds.). Stratabound ore deposits in the Andes. Berlin : Springer, 1990. p. 777-815 Available at: http://archive-ouverte.unige.ch/unige:78117 Disclaimer: layout of this document may differ from the published version. 1 / 1 Main Characteristics of Representative Andean Stratabound Ore Deposits and General Index of Districts, Mines, and Occurrences (Printed Lists of a Data Base) L. Font bote 1 This appendix contains the following two parts: A) Printed lists of a data base with the main characteristics of about 180 represen­ tative Andean stratabound ore deposits. This information is arranged ( 1) from north to south, and (2) alphabetically. B) Index of about 520 districts, mines, ore occurrences, and prospects mentioned in the book, including also about 230 non-stratabound ore deposits. In all cases the same abbreviations have been used. For references of individual ore deposits see the respective contributions in this book. Additional sources of information are given in Fontbote (this Vol., pp. 79-110). A) Printed Lists of a Data Base with the Main Characteristics of Representative Andean Stratabound Districts, Mines, Ore Occurrences, and Prospects The lists contain synaptical information on about 180 representative Andean stratabound districts, mines, and ore occurrences. The following abbreviations are used: Name of the ore district, mine, ore occurrence, or prospect. Magn Magnitude. The intention is to give some idea of the relative impor­ tance of the various deposits. M3: probably over 10 million t ore M2: probably 1-10 million t ore M1: probably 0.1-1 million t ore 0: ore occurrence, probably less then 0.1 million t ore Pr: ore prospect. No data on magnitude. 1 Mineralogisch-Petrographisches lnstitut der Universitlit, INF 236, D-6900 Heidelberg, FRO. Present address: Dep. Mineralogie, 13, rue des Maraichers, CH-1211 Geneve, Switzerland Stratabound Ore Deposits in the Andes L. Fontbote, G. C. Amstutz, M. Cardozo, E. Cedillo, J. Frutos (Eds.) © Springer-Verlag Berlin Heidelberg 1990 778 L. Fontbote Country Lat. S Latitude. "N' before the value indicates north latitude. All other values are south latitude. Long. W West longitude. Stage Metallogenetic stage as defined in Fontbote (this Vol., see pp. 80 and 83). In addition PC: Precambrian, Sub: Sub-Andean basins (Lower Cretaceous-Eocene). Elem Main elements of economic interest. In addition, BIF: banded iron formation, ironstone: mainly oolitic iron ore, MS: massive sulfide, RB: red bed-type. Host rock Information usually includes lithology, stratigraphic unit (F: Forma­ tion, G: Group), and age. Page Page(s) on which the ore deposit is mentioned in the book. References can be found in the respective contribution(s). The same information is (1) arranged from north to south (pp. 779-784) (2) arranged alphabetically (pp. 785-790) Representative Andean Stratabound Ore Occurrences and Dep:>aits Arranged fran North to South Name Magn Country Lat. S Long. W Stag Elern Host :r:oclt Page ~ ~ Bailadores M2 Venezue N08gll 1 7lg501 Pl Zn-Pb-Cu MS Pyrocl. & P,Yllita, IU:!idlachS F., U. Carbo 82 Hioogrande Pr Colanbi N06. 7g 76.5g NIIo CU- ( Zn) MS VolCAIIOHd. ~~eq., eq. Barroso F.?, L. Cretac.? 1021 379ff l El Roble M2 Colanbi N()5g56 I 76gll1 NIIo CU-(Au) MS Thol. basalt & chert, Callasgordas G., Cretac. 102, 379ff w E1 Dovio Pr Colanbi N04.5g 76.lg NIIo CU-(Zn) MS Volcanoeed. seq, equiv. cal!asgordas G.?, Cret. 102, 382ft El Azufral Pr Colanbi N06.6g 75.3g NIIo CU-(Zn) MS Ophiolite ccmplex in the Central Cordillera 382, 386 La Plata Ml. Ecuador 00g25 I 78g551 NIIo CU-Zn-Au MS Volcanosed. seq., Macuchi F., u. Cretac.-Eoc. 102, 389ff Macuchi Pr Ecuador 00g58 I 79g041 NIIo CU Pb Zn MS Volcanoeed. seq., Hacuchi F., u. Cretac.-Eoc. 102 I Tarrbogrande M3 Peru 04g54 1 80g041 IIc CU-Zn-Ag MS Volcanosed. seq., Las Lanas Group, Apt.-Alb. 42, 48, 83, 93, 95 Bay0var 0 Peru 06g05 1 80g5QI III P Continental sed., zapayal F., Miocene 41, 49 Las Coloradas (Hualgayoc o.) M2 Peru 06g451 78g391 lie? Pb-Zn-Ag-Au Subvolc. and li.mest., Pulluicana F., Albian 49, 579 Hualgayoc District M3 Peru 06.6g 78.5g IIe? Pb-Zn-Ag-Au-cu see Las Coloradas, Pczos Rices, Carolina 41, 48, 56, 83, 98, I 100, 569ff, 735ff, 759ff ::r~ Bella Uni6n (Hualgayoc o. l Ml. Peru 06g461 78g371 IIe? Pb-Zn-Ag Carbonate :r:oclts, Chulec F. , Albian 48, 577ft I Carolina (Hualgayoc o.) M2 Peru 06g461 78g381 lie? Pb-Zn-Ag Subvolc. & carbonat. :r:oclts, Chulec F., Albian 48, 575ff g Pczos Rices (Hualgayoc o.) M2 Peru 06g461 78g381 IIe? Pb-Zn-Ag SUbv. & carbonate rocks, Pariatambo F., Albian 49, 52 ;. Santa Hetallotect Peru IIe see El Extrailo, Huanzala, Pachapaqui 48, 83, 9Bff. 737ff El Extra& (Santa Metal.) M2 Peru 09gl41 77g57' IIe Zn-Pb Carbonate :r:oclts, Santa F. , Lower Cret. 41, 48, 99, 557' 737ff, 759ff Olaqlla (near Harao) 0 Peru 09g5QI 75g481 Ic Pb-F Dolanite (+OCR), Tambo Marla F., Norian-Hett. 256ff Huanzala '(Santa Hewllotectl M2 Peru 09g501 76g571 lie Zn-Ag-Pb-Cu Skarn, Santa F., Lower Cret. 41, 99, 555ft, 759 Aida Unica (Santa Metal.) Ml. Peru 09g521 72g211 lie Zn-Pb-Ag Carbonat.-silicicl. & tuff, Santa F., L. Cret. 41, 48, 99, 562ff Pachapaqui o. <santa Metal Mi Peru lOg 77g IIe see A!da Unica 99, 555ft, 744 Paclloo Llama.c (Santa Mitt... Ml. Peru 10gl21 76g581 IIe Carbonate rocks, Santa F., Lower Cretaceous 99 San Roque (near Oxapampal 0 Peru 10g321 75g261 Ic Zn-Pb Dolanite, Oxapampa Formation, Sinen.Jrian 256ff Macl'lcim Ml. Peru 10g331 76gl71 Ia Pb-Zn-<:u-Ag MS Massive py & vole. & carb., Chambara F., 42, 256ff, 279, 302ff' 759ff Ishcay Cruz (Santa Metal.) M2 Peru 10g381 76g351 IIe Zn-Pb-Ag-cu MS Carbonate rocks, Santa F., Lower Cret. 41, 48, 99, 583ff Cerro de Pasco M3 Peru 10g421 76gl61 Pl? Zn-Pb-Cu-Ag MS Phyllites & shales, Excelsior F., Devonian 41, 82 Tambo Marla o Peru 10g44' 75gl91 Ic Zn Dolanite (+OCR), Tambo Marla F., Norian-Hett. 263 Colquijirca M2 Peru l0g461 76gl31 Ilia Zn-Ag-Pb-Cu Pyroc.-~., Calera Memb., J?oc;Obamba F., Cenoz. 41, 49, 50, 56, 83, 101, 615ff, 735ff Shalipayco K2 Peru l0g501 75g581 Ib Zn-Pb-Ag Dolanite, Chambara F., u. Trias-Hett. 42, 47, 83, 84, :::l 256ff, 737ff, 759ff 10 Representative Andean Stratabound Ore Occurrences and Deposits Arranged fran North to South -.I Name Magn Country Lat. S Long. W Stag Elem Host rock Page ~ Pariatambo Fm., V OE'88 in the Peru lie V see Mina Ragra 595ff Mina Ragra Ml Peru 10g51' 76g33 1 IIe V Asphaltite, 1~, Pariatallbo F., Albian 42, 49, 83, 100, 595ff Ulcunayo Ml Peru 10g561 75g51 1 Ib Zn-Pb Dolanite, a-mra F., Upper 'l'riasaic 256, 262 Pichi~ caluga Ml Peru llg07 1 75g23 1 Ib Zn-Pb dolanite, Pucara G., u. Trias-Liassic 256ff san Vicente M3 Peru llgl2' 75g21 1 Ic Zn-Pb Dolanite (+OCR), 'l'alrbo Marla F., Norian-Hett. 42, 47, 55, 83, 84_,256ff, 279, 305ff, 737ff, 75f)ff Chilpes (san Vicente belt) Ml Peru llgl5 1 75g21 1 Ic Zn-Pb Dolanite (+OCR), Tambo Marla F., Norian-llett. 256ff Negra Huanusha 0 Peru llgl8' 75g53 1 P2 CuRB Red beds, Mitu Group, Permian 42, 44, 82, 123ff Malpaso area 0 Peru llg25 1 76g01 1 Ia ttl, Ba (Ag) carbt.tuff gyps. sill, Chantlara F.,Norian-Lias 260, 279 Mar!a Teresa (casma Metal. l Pr Peru llg301 77g161 lie Ba-Pb-Ag Sed. & vole., casma F., middle Albian 48,94 Katy, Manto Ml Peru llg35 1 76g07 1 Ia Cu-Pb-Zn MS Tuff, massive pyrite contact Mitu-Pucara, Lias. 83, 261, 279 Venturosa <santa Metal.? l Ml Peru llg37 1 76g25' lie? Pb-Zn Skarn, limestones, santa FoDnation, L. Cret. 48 Pengo de Andaychagua 0 Peru llg40' 76g101 P2 Cu-Pb-Zn Volcaniclastic layers, Mitu G., Permian 44 Tingocancha. (llano de Yauli D.) Sec Peru llg401 75g59 1 Ia carbt., tuff, vole., Aramachay-Cond. F., Lias. 260, 279ff Yauli District, llano de M3 Peru llg42 1 76g05' Ia Zn-Pb-Cu-BaAgHS see carahuacra and Huaripampa 256ff, 267ff, 279ff Huaripampa (llano de Yauli D.) M2 Peru llg42 1 76g05 1 Ia Zn-Ag-Pb MS carbt., tuff, vole., Aramachay-Cond. F., Lias. 47, 83, 84, 261, 279 ff, 302, 759ft carahuacra (llano de Yauli D.) M2 Peru llg43' 76g04 1 Ia Zn-Ag-Pb MS carbt., tuff, vole., Aramachay-cond. F:, Lias. 47, 52, 83, 84, 261, 279ft, 302, 737ft, 759ff Sincos 0 Peru llg48' 75g24 1 I v (Se) Bitum. shale and tuffs, Aramachay F., Liassic 42, 47, 256ff, 596ff Ultimatum 0 Peru llgSO' 76g00' P1 Cu-Zn-Pb-Ag Basic subvolc. & vole., Excelsior G., Paleoz. 115ff, 268 casma Metallotect Peru IIc see Leonila Graciela, Palma, Juanita, etc. 48, 407ff Aurora Augusta (casma Metal.) Ml Peru llg55 1 76g52 1 lie Ba Vole. & sed., casma F., middle Albian 48,94 Leonila-<>raciela (Casma M.) M2 Peru llg56' 76g01 1 lie Zn-Ba MS Vole. & sed., casma F., middle Albian 41, 48, 56, 83, 94, 759ff Juanita <casma Metal. l M2 Peru llg561 76g34 1 lie Zn-(Pb) MS Vole. & sed., casma F., middle Albian 48, 94 Miraflores 0 Peru 12g03 1 75g42 1 lie Zn-Pb-Ba carbonate rocks, base Chaucha.
Recommended publications
  • Geochemical Evolution of Triassic and Jurassic Volcanic Successions in Northern Chile Between 20° and 26°30' Latitude Sout
    Third ISAG, Sr Malo (France),17-19/9/1996 Geochemical evolution of Triassic and Jurassic volcanic successions in Northern Chile between 20" and 26'30' latitude south Wolfgang KRAMER(~)and Ralph EHRLICHMANN(~) (l) GeoForschungsZentrum Potsdam, Telegrafenberg C2, D-14473 Potsdam, Germany (2) KuhnertstraBe 20, D-13595 Berlin, Germany Key words : Subduction volcanism, geochemistry, Jurassic, Triassic, Coastal Range, Precordillera INTRODUCTION Triassic volcaniclastic and intermediate to acid volcanic remainders can be found in some small graben- like structures whereas preserved volcanic successions of a Jurassic magmatic arclback arc system are widespread in Northern Chile between around 20" and 26'30' latitude south within the Coastal Range and subordinate in the Precordillera. Interbedded lava flows, pyroclastica, and other sediments with fossil content on places allow biostratigraphic age-correlations as shown in Table l. New findings and analytical results characterize the Mesozoic volcanic successions of Northern Chile as rather variable in space and time. OCCURRENCES AND SOME GEOLOGICAL-VOLCANOLOGICAL FEATURES The pyroclastica-lava series of Upper Triassic graben-like structures from the Coastal Range are calc- alkaline and of intermediate to acid character, different from the Triassic Paramillos volcanic complex of the Cuyo basin, West-Argentina. This is made up by alkaline basalts (cf. Ramos & Kay 1991). Predominant pyroclastic rocks and lavas, which are concentrated around eruptive centers, appear in the Lower Jurassic (Sinemurian) Posada de 10s Hidalgos-Formation south of Taltal. They are calc-alkaline intermediate rocks. The volcanic successions, chiefly formed in the Middle Jurassic, are predominant mafic and may reach great thicknesses, e.g. up to more than 5 km near Antofagasta (cf.
    [Show full text]
  • Structure, Petrography and Geochemistry EARTH SCIENCES
    EARTH SCIENCES RESEARCH JOURNAL GEOLOGY Earth Sci. Res. J. Vol. 24, No. 2 (June, 2020): 121-132 The Choiyoi Group in the Cordón del Plata range, western Argentina: structure, petrography and geochemistry Amancay Martinez1, Adrian Gallardo1,2, Laura Giambiagi3, Laura Tobares1 1San Luis National University, FCFMyN, Department of Geology, San Luis, Argentina 2CONICET (Argentina National Scientific and Technical Research Council), San Luis, Argentina. 3IANIGLA-CONICET CCT Mendoza. Adrián Ruiz Leal s/n, Parque San Martín. (5500). Mendoza, Argentina. * Corresponding author: [email protected] ABSTRACT Keywords: Choiyoi Group; magmatism; petrography; The Choiyoi Group from the Permo-Triassic, is one of the most conspicuous volcano-sedimentary suites of southern geochemistry; Gondwana; Argentina. South America, considered critical to understand the geological evolution of the western margins of Gondwana. In this regard, petrography, geochemistry, and structural data were examined to better elucidate the physical character and emplacement conditions of the unit in the Cordón del Plata range, within the Frontal Cordillera of Mendoza, Argentina. The site is representative of the magmatism and deformation through different Andean cycles. Results of the study indicate three facies of increasing felsic composition upwards. Mafic units consist of basalts, andesite and andesitic breccias at the base of the sequence. Felsic rocks such as rhyodacites, granites and welded tuffs are predominant above. The fault zone of La Polcura – La Manga is the most prominent structural feature in the region, which presumably controlled the emplacement of breccias and ignimbrites within the middle and upper members. These compositional variations suggest a magma evolution from subduction to a rifting environment after the San Rafael orogeny in the Late Palaeozoic.
    [Show full text]
  • Basement Composition and Basin Geometry Controls on Upper-Crustal Deformation in the Southern Central Andes (30–36° S)
    Geol. Mag.: page 1 of 17 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000364 Basement composition and basin geometry controls on upper-crustal deformation in the Southern Central Andes (30–36° S) ∗ ∗ ∗ JOSÉ F. MESCUA †, LAURA GIAMBIAGI , MATÍAS BARRIONUEVO , ∗ ∗ ANDRÉS TASSARA‡, DIEGO MARDONEZ , MANUELA MAZZITELLI ∗ & ANA LOSSADA ∗ Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Centro Científico Tecnológico Mendoza, CONICET. Av. Ruiz leal s/n Parque General San Martín, Mendoza (5500) Argentina ‡Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Barrio Universitario, Concepción, Casilla 160-C, Chile (Received 13 December 2015; accepted 5 April 2016) Abstract – Deformation and uplift in the Andes are a result of the subduction of the Nazca plate below South America. The deformation shows variations in structural style and shortening along and across the strike of the orogen, as a result of the dynamics of the subduction system and the features of the upper plate. In this work, we analyse the development of thin-skinned and thick-skinned fold and thrust belts in the Southern Central Andes (30–36° S). The pre-Andean history of the area determined the formation of different basement domains with distinct lithological compositions, as a result of terrane accretions during Palaeozoic time, the development of a widespread Permo-Triassic magmatic province and long-lasting arc activity. Basin development during Palaeozoic and Mesozoic times produced thick sedimentary successions in different parts of the study area. Based on estimations of strength for the different basement and sedimentary rocks, calculated using geophysical estimates of rock physical properties, we propose that the contrast in strength between basement and cover is the main control on structural style (thin- v.
    [Show full text]
  • Geodynamics of Late Carboniferous–Early Permian Forearc in North Chile (28°30′–29°30′S)
    Research Article Journal of the Geological Society Published Online First doi:10.1144/jgs2016-010 Geodynamics of Late Carboniferous–Early Permian forearc in north Chile (28°30′–29°30′S) C. Creixell1*, V. Oliveros2, P. Vásquez1, J. Navarro3, D. Vallejos2, X. Valin2, E. Godoy4 & M. N. Ducea5,6 1 Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia, Santiago, Chile 2 Departamento Ciencias de la Tierra, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile 3 Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 4 Tehema Consultores Geológicos, Virginia Subercaseaux 4100, Pirque, Santiago, Chile 5 Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA 6 Universitatea Bucaresti, Facultatea de Geologie Geofizica, Strada N. Balcescu Nr 1, Bucuresti, Romania * Correspondence: [email protected] Abstract: A large section of the Late Palaeozoic forearc is exposed along the coastal ranges of north–central Chile (28°–29° 30′S). This is characterized by three lithotectonic units: (1) the Punta de Choros Metamorphic Complex (basal accretion series), composed mostly of micaschists and metabasites; (2) the Chañaral Epimetamorphic Complex (frontal accretion series), formed by metaturbidites and metasediments; (3) the Llano del Chocolate Beds (forearc basin deposits), composed of a sedimentary sequence of clastic sedimentary rocks with minor limestones and acidic volcanic rocks. Within the basal accretion series, two distinctive blocks of garnet-bearing schists with amphibolite-facies metamorphism have been preserved, recording early stages of the subduction system. The stratigraphic record and the U–Pb dating of igneous (291–318 Ma) and detrital zircons (maximal deposition ages between 273 and 292 Ma) in the forearc basin deposits, coupled with 40Ar/39Ar ages for metamorphic rocks (319–280 Ma), indicate that forearc sedimentation was broadly contemporaneous with metamorphism and exhumation of the basal accretion series.
    [Show full text]
  • Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
    Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74,
    [Show full text]
  • NEUQUÉN BASIN, ARGENTINA Latin American Journal of Sedimentology and Basin Analysis, Vol
    Latin American Journal of Sedimentology and Basin Analysis ISSN: 1669-7316 [email protected] Asociación Argentina de Sedimentología Argentina TUNIK, Maisa A.; PAZOS, Pablo J.; IMPICCINI, Agnes; LAZO, Darío; AGUIRRE- URRETA, María Beatriz DOLOMITIZED TIDAL CYCLES IN THE AGUA DE LA MULA MEMBER OF THE AGRIO FORMATION (LOWER CRETACEOUS), NEUQUÉN BASIN, ARGENTINA Latin American Journal of Sedimentology and Basin Analysis, vol. 16, núm. 1, enero-julio, 2009, pp. 29-43 Asociación Argentina de Sedimentología Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=381740363004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LATIN AMERICAN JOURNAL OF SEDIMENTOLOGY AND BASIN ANALYSIS | VOL. 16 (1) 2009, 29-43 © Asociación Argentina de Sedimentología - ISSN 1669 7316 DOLOMITIZED TIDAL CYCLES IN THE AGUA DE LA MULA MEMBER OF THE AGRIO FORMATION (LOWER CRETACEOUS), NEUQUÉN BASIN, ARGENTINA Maisa A. TUNIK 1, Pablo J. PAZOS 2, Agnes IMPICCINI 3, Darío LAZO 4 and María Beatriz AGUIRRE-URRETA 4 1Laboratorio de Tectónica Andina, Universidad de Buenos Aires. CONICET. Actualmente en: CIMAR - Universidad Nacional del Comahue. Av. Buenos Aires 1400, Neuquén. Argentina. E-mail: [email protected] 2Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires. Argentina. 3Universidad Nacional del Comahue, Av. Buenos Aires 1400, Neuquén, Argentina. 4Laboratorio de Bioestratigrafía de Alta Resolución. Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires. Argentina. Abstract: The Agrio Formation (Valanginian to early Barremian) is a siliciclastic and carbonate unit of the Neuquén Basin in west central Argentina.
    [Show full text]
  • The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation
    The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina) A Thesis Submitted to the Faculty of Drexel University by Victoria Margaret Egerton in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 © Copyright 2011 Victoria M. Egerton. All Rights Reserved. ii Dedications To my mother and father iii Acknowledgments The knowledge, guidance and commitment of a great number of people have led to my success while at Drexel University. I would first like to thank Drexel University and the College of Arts and Sciences for providing world-class facilities while I pursued my PhD. I would also like to thank the Department of Biology for its support and dedication. I would like to thank my advisor, Dr. Kenneth Lacovara, for his guidance and patience. Additionally, I would like to thank him for including me in his pursuit of knowledge of Argentine dinosaurs and their environments. I am also indebted to my committee members, Dr. Gail Hearn, Dr. Jake Russell, Dr. Mike O‘Connor, Dr. Matthew Lamanna, Dr. Christopher Williams and Professor Hermann Pfefferkorn for their valuable comments and time. The support of Argentine scientists has been essential for allowing me to pursue my research. I am thankful that I had the opportunity to work with such kind and knowledgeable people. I would like to thank Dr. Fernando Novas (Museo Argentino de Ciencias Naturales) for helping me obtain specimens that allowed this research to happen. I would also like to thank Dr. Viviana Barreda (Museo Argentino de Ciencias Naturales) for her allowing me use of her lab space while I was visiting Museo Argentino de Ciencias Naturales.
    [Show full text]
  • Crustal-Seismicity.Pdf
    Tectonophysics 786 (2020) 228450 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data T ⁎ Agostina Venerdinia,b, , Patricia Alvaradoa,b, Jean-Baptiste Ammiratia,1, Marcos Podestaa, Luciana Lópezc, Facundo Fuentesd, Lepolt Linkimere, Susan Beckf a Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (Consejo Nacional de Investigaciones Científicas y Técnicas CONICET– Facultad de Ciencias Exactas, Físicas y Naturales, UNSJ), San Juan, Argentina b Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina c Instituto Nacional de Prevención Sísmica, San Juan, Argentina d YPF S.A., Buenos Aires, Argentina e Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, Costa Rica f Department of Geosciences, University of Arizona, Tucson, AZ, United States ARTICLE INFO ABSTRACT Keywords: In this study, we analyze 100 crustal Precordilleran earthquakes recorded in 2008 and 2009 by 52 broadband Crust seismic stations from the SIEMBRA and ESP, two temporary experiments deployed in the Pampean flat slab Focal mechanism region, between the Andean Cordillera and the Sierras Pampeanas in the Argentine Andean backarc region. Fold-thrust belt In order to determine more accurate hypocenters, focal mechanisms and regional stress orientations, we Andean retroarc relocated 100 earthquakes using the JHD technique and a local velocity model. The focal depths of our relocated Flat slab events vary between 6 and 50 km. We estimated local magnitudes between 0.4 ≤ M ≤ 5.3 and moment South America L magnitudes between 1.3 ≤ Mw ≤ 5.3.
    [Show full text]
  • Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J
    Gondwana Research, G! 7, No. 4, pp. 1105-1 116. 0 2004 International Association for Gondwana Research, Japan. ISSN: 1342-937X Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J. Chernicoff and Eduardo 0. Zappettini2 Council for Scientific and Technical Research (CONICET),Universidad de Buenos Aires, E-mail: [email protected] ' Argentine Geological-Mining Survey (SEGEMAR). Av. Julio A. Roca 651, 8" piso, (1322) Buenos Aires, Argentina, E-mail: [email protected] * Corresponding author (Manuscript received July 24,2003; accepted January 26,2004) Abstract The geological interpretation of high-resolution aeromagnetic data over the La Pampa province, in central Argentina, in addition to lower resolution magnetic information from the region of the Neuquen and Colorado basins, leads to the definition of the precise boundaries of the Chilenia, Cuyania, Pampia and Patagonia terranes, as well as that of the Rio ..... de la Plata Craton, within the study region. The high-resolution aeromagnetic survey data are compared and studied in conjunction with all the available geological information, to produce a map of the solid geology of this region, which is largely covered by Quaternary sediments. A number of structures of different magnitudes, as we11 as their relative chronology, are also recognized, i.e., regional faults, sub-regional faults, fractures and shear zones, as well as the most conspicuous magnetic fabric of the basement that reflects its main planar structures. Three different basements are distinguished on the basis of their contrasting magnetic character, and are interpreted to represent the Cuyania and Pampia terranes and the Rio de la Plata Craton, separated from each other by large-scale discontinuities.
    [Show full text]
  • Programa Del Curso Posgrado: Geología Del Basamento. La Aportación De La Geocronología
    Programa del Curso Posgrado: Geología del Basamento. La aportación de la Geocronología. Docente: Dr. Cesar Casquet Objetivos El curso va dirigido a estudiantes de posgrado que incluyen en sus temas de tesis la investigación de las unidades del basamento cristalino. El principal objetivo del curso es mostrar diferentes modalidades de abordaje en el estudio geocronológico de rocas ígneas y metamórficas en función del problema que se pretende resolver. No se trata de un curso de geología de basamento en general, ni de aspectos teóricos de la geocronología, sino de geocronología aplicada a la resolución de problemas inherentes a la geología de basamento. Para el cursado del mismo se requieren conocimientos básicos de los diferentes métodos geocronológicos aplicados a rocas antiguas y de geología general de rocas ígneas y metamórficas. Durante el dictado del curso se expondrán y discutirán diferentes ejemplos de aplicaciones geocronológicas a la resolución de problemas del basamento cristalino de las Sierras Pampeanas de Argentina. Se expondrá principalmente la experiencia acumulada como resultado de las investigaciones realizada desde el año 1993 por el grupo de investigación PAMPRE. El curso concluirá con una clase/conferencia dedicada a resumir precisamente la interpretación sobre la evolución de las Sierras Pampeanas desde el Proterozoico medio hasta el Paleozoico inferior y una excursión de campo. Programa del Curso 1era Parte (incluye las actividades de la mitad del primer día) Introducción al Problema de la datación en el basamento: 1-Definición del término basamento cristalino. 2-Principales problemas que plantea el estudio de las unidades de basamento. 3-El principal problema de la geología de basamento: Las edades de los eventos magmáticos, metamórficos y deformacionales.
    [Show full text]
  • PDF Linkchapter
    Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Abanico extensional basin 2, 4, 68, 70, 71, 72, 420 Andacollo Group 132, 133, 134 basin width analogue modelling 4, 84, 95, 99 Andean margin Abanico Formation 39, 40, 71, 163 kinematic model 67–68 accommodation systems tracts 226, 227, 228, 234, thermomechanical model 65, 67 235, 237 Andean Orogen accretionary prism, Choapa Metamorphic Complex development 1, 3 20–21, 25 deformation 1, 3, 4 Aconcagua fold and thrust belt 18, 41, 69, 70, 72, 96, tectonic and surface processes 1, 3 97–98 elevation 3 deformation 74, 76 geodynamics and evolution 3–5 out-of-sequence structures 99–100 tectonic cycles 13–43 Aconcagua mountain 3, 40, 348, 349 uplift and erosion 7–8 landslides 7, 331, 332, 333, 346–365 Andean tectonic cycle 14,29–43 as source of hummocky deposits 360–362 Cretaceous 32–36 TCN 36Cl dating 363 early period 30–35 aeolian deposits, Frontal Cordillera piedmont 299, Jurassic 29–32 302–303 late period 35–43 Aetostreon 206, 207, 209, 212 andesite aggradation 226, 227, 234, 236 Agrio Formation 205, 206, 207, 209, 210 cycles, Frontal Cordillera piedmont 296–300 Chachahue´n Group 214 Agrio fold and thrust belt 215, 216 Neuque´n Basin 161, 162 Agrio Formation 133, 134, 147–148, 203, Angualasto Group 20, 22, 23 205–213, 206 apatite ammonoids 205, 206–211 fission track dating 40, 71, 396, 438 stratigraphy 33, 205–211 (U–Th)/He thermochronology 40, 75, 387–397 Agua de la Mula Member 133, 134, 205, 211, 213 Ar/Ar age Agua de los Burros Fault 424, 435 Abanico Formation
    [Show full text]
  • Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
    Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5.
    [Show full text]