Name Mass Radius Semi Major Axis Discovered

Total Page:16

File Type:pdf, Size:1020Kb

Name Mass Radius Semi Major Axis Discovered # name mass radius semi_major_axis discovered 1SWASP J1407 b 20.0 3.9 2012 38 Vir b 4.51 1.82 2016 55 Cnc e 0.02547 0.177536225419 0.015439 2004 BD+20 594 b 0.0513 0.199 0.241 2016 CVSO 30 b 6.2 1.91 0.00838 2012 CoRoT-1 b 1.03 1.49 0.0254 2007 CoRoT-10 b 2.75 0.97 0.1055 2010 CoRoT-11 b 2.33 1.43 0.04351 2010 CoRoT-12 b 0.917 1.44 0.04016 2010 CoRoT-13 b 1.308 0.885 0.051 2010 CoRoT-14 b 7.6 1.09 0.027 2010 CoRoT-15 b 63.4 1.12 0.045 2010 CoRoT-16 b 0.535 1.17 0.0618 2010 CoRoT-17 b 2.43 1.02 0.0461 2010 CoRoT-18 b 3.47 1.31 0.0295 2011 CoRoT-19 b 1.11 1.29 0.0518 2011 CoRoT-2 b 3.31 1.465 0.0281 2007 CoRoT-20 b 4.24 0.84 0.0902 2011 CoRoT-21 b 2.26 1.3 0.0417 2011 CoRoT-22 b 0.0383853003178 0.435365216104 0.092 2011 CoRoT-23 b 2.8 1.08 0.0477 2011 CoRoT-24 b 0.018 0.33 0.056 2011 CoRoT-24 c 0.088 0.44 0.098 2011 CoRoT-25 b 0.27 1.08 0.0578 2012 CoRoT-26 b 0.52 1.26 0.0526 2012 CoRoT-27 b 10.39 1.007 0.0476 2012 CoRoT-28 b 0.484 0.955 0.059 2012 CoRoT-29 b 0.85 0.9 0.039 2012 CoRoT-3 b 21.77 1.01 0.057 2008 CoRoT-30 b 2.84 1.02 0.084 2017 CoRoT-31 b 0.84 1.46 0.0586 2017 CoRoT-32 b 0.15 0.57 0.071 2017 CoRoT-33 b 59.2 1.1 0.0579 2015 CoRoT-4 b 0.72 1.19 0.09 2008 CoRoT-5 b 0.467 1.33 0.04947 2008 CoRoT-6 b 2.96 1.166 0.0855 2009 CoRoT-7 b 0.0149 0.136 0.0172 2009 CoRoT-8 b 0.215838655885 0.569186491545 0.063 2010 CoRoT-9 b 0.84 0.94 0.407 2010 EPC 212069861 b 0.237 0.1641 2017 EPIC 211945201 b 0.085 0.546 0.148 2018 EPIC 201128338 b 0.251 0.1735 2017 EPIC 201295312 b 0.0379 0.245 2016 EPIC 201445392 c 0.215 2015 EPIC 201598502 b 0.178 0.601 2017 EPIC 201637175 b 1.4 0.25 0.0088 2015 EPIC 201713348 b 0.118 2015 EPIC 201713348 c 0.25 2015 EPIC 203826436 b 0.144 2015 EPIC 203826436 c 0.245 2015 EPIC 203826436 d 0.244 2015 EPIC 204221263 b 0.138 2016 EPIC 204221263 c 0.216 2016 EPIC 211331236 b 0.181 0.0188 2017 EPIC 211331236 c 0.173 0.0491 2017 EPIC 211391664 b 0.101 0.38 0.0943 2016 EPIC 211418729 b 1.85 0.942 0.09309 2017 EPIC 211442297 b 0.84 1.115 0.1367 2017 EPIC 211822797 b 0.2 2016 EPIC 211913977 b 0.18 2016 EPIC 211924657 b 0.2 0.0266 2017 EPIC 211969807 b 0.17 2016 EPIC 211970147 b 0.12 2016 EPIC 211990866 b 0.31 2016 EPIC 212006344 b 0.109 0.0288 2017 EPIC 213715787 b 0.123 0.0159 2017 EPIC 216468514 b 0.84 1.44 0.048 2016 EPIC 219388192 b 36.5 0.937 0.0593 2016 EPIC 220194974 b 0.119 0.0454 2017 EPIC 220194974 c 0.154 0.0616 2017 EPIC 220194974 d 0.146 0.0774 2017 EPIC 220504338 1.28 0.91 0.0575 2016 EPIC 220522664 b 0.146 0.083 2017 EPIC 220598331 b 0.178 0.0727 2017 EPIC 220621087 b 0.12 0.0365 2017 EPIC 228735255 b 1.019 1.095 0.0591 2017 EPIC 228754001 b 0.495 1.089 0.0916 2017 EPIC 228934525 b 0.199 0.0408 2017 EPIC 228934525 c 0.187 0.0683 2017 EPIC 249622103 b 0.12472 0.03317 2018 EPIC 249622103 c 0.1191 0.06687 2018 EPIC 249622103 d 0.2355 0.1527 2018 EPIC-206011691 b 0.142 0.0731 2015 EPIC-206011691 c 0.171 0.1026 2015 EPIC-210490365 b 0.306 2015 GJ 1132 b 0.0051 0.103 0.0154 2015 GJ 1214 b 0.0203253311519 0.238201870286 0.01411 2009 GJ 3470 b 0.04375332925866 0.37380742940036 0.03557 2012 GJ 436 b 0.07 0.38 0.02887 2004 GJ 9827 b 0.0258 0.146 0.0211 2017 GJ 9827 c 0.0079 0.115 0.044 2017 GJ 9827 d 0.012 0.186 0.0627 2017 HAT-P-1 b 0.525 1.319 0.05561 2006 HAT-P-11 b 0.0824340056005 0.421983088559 0.053 2009 HAT-P-12 b 0.210489884529 0.954591764817 0.0384 2009 HAT-P-13 b 0.85 1.28 0.0426 2009 HAT-P-14 b 2.2 1.2 0.0594 2010 HAT-P-15 b 1.946 1.072 0.0964 2010 HAT-P-16 b 4.193 1.289 0.0413 2010 HAT-P-17 b 0.534 1.01 0.0882 2010 HAT-P-18 b 0.183 0.947 0.0559 2010 HAT-P-19 b 0.292 1.132 0.0466 2010 HAT-P-2 b 8.74 0.951 0.0674 2007 HAT-P-20 b 7.246 0.867 0.0361 2010 HAT-P-21 b 4.063 1.024 0.0494 2010 HAT-P-22 b 2.147 1.08 0.0414 2010 HAT-P-23 b 2.09 1.368 0.0232 2010 HAT-P-24 b 0.685 1.242 0.0465 2010 HAT-P-25 b 0.567 1.19 0.0466 2010 HAT-P-26 b 0.0585218513042 0.564725782364 0.0479 2010 HAT-P-27-WASP-40 b 0.66 1.055 0.0403 2011 HAT-P-28 b 0.626 1.212 0.0434 2011 HAT-P-29 b 0.778 1.107 0.0667 2011 HAT-P-3 b 0.591 0.827 0.03866 2007 HAT-P-30-WASP-51 b 0.711 1.34 0.0419 2011 HAT-P-31 b 2.171 1.07 0.055 2011 HAT-P-32 b 0.941 2.037 0.0344 2011 HAT-P-33 b 0.763 1.827 0.0503 2011 HAT-P-34 b 3.328 1.107 0.0677 2012 HAT-P-35 b 1.054 1.332 0.0498 2012 HAT-P-36 b 1.832 1.264 0.0238 2012 HAT-P-37 b 1.169 1.178 0.0379 2012 HAT-P-38 b 0.267 0.825 0.0523 2012 HAT-P-39 b 0.599 1.571 0.0509 2012 HAT-P-4 b 0.68 1.27 0.0446 2007 HAT-P-40 b 0.615 1.73 0.0608 2012 HAT-P-41 b 0.8 1.685 0.0426 2012 HAT-P-42 b 0.975 1.277 0.0575 2012 HAT-P-43 b 0.66 1.283 0.0443 2012 HAT-P-44 b 0.392 1.28 0.0507 2013 HAT-P-44 c 1.6 0.699 2013 HAT-P-45 b 0.892 1.426 0.0452 2013 HAT-P-46 b 0.493 1.284 0.0577 2013 HAT-P-46 c 2.0 0.387 2013 HAT-P-47 b 0.206 1.313 0.0615 2016 HAT-P-48 b 0.168 1.131 0.0543 2016 HAT-P-49 b 1.73 1.413 0.0438 2014 HAT-P-5 b 1.06 1.252 0.04079 2007 HAT-P-50 b 1.36 1.288 0.0453 2015 HAT-P-51 b 0.309 1.293 0.05069 2015 HAT-P-52 b 0.819 1.009 0.03694 2015 HAT-P-53 b 1.487 1.318 0.03159 2015 HAT-P-54 b 0.76 0.944 0.04117 2014 HAT-P-55 b 0.582 1.182 0.04604 2015 HAT-P-56 b 2.2 1.466 0.0423 2015 HAT-P-57 b 1.85 1.413 0.0406 2015 HAT-P-6 b 1.057 1.33 0.05235 2007 HAT-P-65 b 0.527 1.89 0.03951 2016 HAT-P-66 b 0.783 1.59 0.04363 2016 HAT-P-67 b 0.34 2.085 0.06505 2017 HAT-P-7 b 1.741 1.431 0.0379 2008 HAT-P-8 b 1.34 1.5 0.0449 2008 HAT-P-9 b 0.67 1.4 0.053 2008 HATS-1 b 1.855 1.302 0.0444 2012 HATS-10 b 0.526 0.969 0.0449 2015 HATS-11 b 0.85 1.51 0.04614 2016 HATS-12 b 2.4 1.35 0.04795 2016 HATS-13 b 0.543 1.212 0.04057 2015 HATS-14 b 1.071 1.039 0.03815 2015 HATS-15 b 2.17 1.105 0.02712 2014 HATS-16 b 3.27 1.3 0.03744 2015 HATS-17 b 1.338 0.777 0.1308 2016 HATS-18 b 1.98 1.337 0.01761 2016 HATS-19 b 0.427 1.66 0.0589 2016 HATS-2 b 1.345 1.168 0.023 2013 HATS-20 b 0.273 0.776 0.04619 2016 HATS-21 b 0.332 1.123 0.04676 2016 HATS-22 b 2.74 0.953 0.05025 2016 HATS-23 b 1.47 1.86 0.03397 2015 HATS-24 b 2.44 1.487 0.02547 2016 HATS-25 b 0.613 1.26 0.05163 2016 HATS-26 b 0.65 1.75 0.04735 2016 HATS-27 b 0.53 1.5 0.0611 2016 HATS-28 b 0.672 1.194 0.04131 2016 HATS-29 b 0.653 1.251 0.05475 2016 HATS-3 b 1.071 1.381 0.0485 2013 HATS-30 b 0.706 1.175 0.04354 2016 HATS-31 b 0.88 1.64 0.0478 2016 HATS-32 b 0.92 1.249 0.04024 2016 HATS-33 b 1.192 1.23 0.03727 2016 HATS-34 b 0.941 1.43 0.03166 2016 HATS-35 b 1.222 1.464 0.03199 2016 HATS-36 b 2.79 1.263 0.0529 2017 HATS-39 b 0.63 1.57 0.06 2018 HATS-4 b 1.323 1.02 0.0362 2014 HATS-40 b 1.59 1.58 0.04997 2018 HATS-41 b 9.7 1.33 0.0583 2018 HATS-42 b 1.88 1.4 0.03689 2018 HATS-43 b 0.261 1.18 0.04944 2017 HATS-44 b 0.56 1.067 0.03649 2017 HATS-45 b 0.7 1.286 0.05511 2017 HATS-46 b 0.173 0.903 0.05367 2017 HATS-5 b 0.237 0.912 0.0542 2014 HATS-50 b 0.39 1.13 0.05046 2017 HATS-51 b 0.768 1.41 0.04639 2017 HATS-52 b 2.24 1.382 0.02498 2017 HATS-53 b 0.595 1.34 0.04753 2017 HATS-59 b 0.806 1.126 0.06112 2018 HATS-6 b 0.319 0.998 0.03623 2014 HATS-7 b 0.12 0.563 0.04012 2015 HATS-8 b 0.138 0.873 0.04667 2015 HATS-9 b 0.839 1.065 0.03048 2015 HD 10442 b 2.1 2.335 2014 HD 106315 b 0.0396 0.218 0.09012 2017 HD 106315 c 0.0478 0.352 0.1526 2017 HD 149026 b 0.357 0.718 0.04288 2005 HD 17156 b 3.195 1.095 0.1623 2007 HD 189733 b 1.142 1.138 0.03142 2005 HD 195689 b 2017 HD 209458 b 0.69 1.38 0.04747 1999 HD 219134 b 0.012 0.1433 0.038474 2015 HD 283869 0.1749 0.4 2018 HD 286123 b 0.398 1.0 0.104 2018 HD 3167 b 0.0158 0.152 0.01815 2016 HD 3167 c 0.0308 0.269 0.1795 2016 HD 75784 b 1.15 1.073 2014 HD 75784 c 5.6 6.5 2015 HD 80606 b 3.94 0.921 0.449 2001 HD 89345 b 0.103 0.616 0.1086 2018 HD 97658 b 0.0237548374917 0.200464270612 0.08 2010 HIP 116454 b 0.0372 0.226 0.098 2014 HIP 41378 b 0.26 2016 HIP 41378 c 0.228 2016 HIP 41378 d 0.353 2016 HIP 41378 e 0.492 2016 HIP 41378 f 0.91 2016 J1433 b 57.1 2016 K2-10 b 0.085 0.343 2016 K2-105 b 0.094 0.32 2017 K2-106 b 0.0263 0.136 0.0116 2016 K2-106 c 0.018 0.22 0.105 2016 K2-108 b 0.187 0.471 0.0573 2016 K2-11 b 0.674 0.2257 2015 K2-110 b 0.0525 0.2312 0.1021 2017 K2-12 b 0.208 0.0802 2015 K2-13 b 0.169 0.2114 2015 K2-136 b 0.088 2017 K2-136 c 0.267 2017 K2-136 d 1.45 2017 K2-137 b 0.7 0.079 0.0058 2017 K2-138 b 0.14 0.0338 2018 K2-138 c 0.225 0.04454 2018 K2-138 d 0.237 0.05883 2018 K2-138 e 0.294 0.07807 2018 K2-138 f 0.251 0.1043 2018 K2-139 b 0.381 0.812 0.1811 2017 K2-14 b 0.429 0.0627 2015 K2-141 b 0.016 0.135 2017 K2-141 c 0.023 0.62 2018 K2-15 b 0.221 0.091 2015 K2-16 b 0.18 0.0662 2015 K2-16 c 0.227 0.122 2015 K2-17 b 0.199 0.119 2015 K2-18 b 0.02807 0.2 0.143 2015 K2-19 b 0.187 0.691 0.077 2015 K2-19 c 0.031 0.434 0.1032 2015 K2-19 d 0.102 2015 K2-216 b 0.0249 0.161 0.028 2018 K2-24 b 0.0661 0.52 0.154 2015 K2-24 c 0.085 0.723 0.247 2015 K2-26 b 0.238 2015 K2-27 b 0.0972 0.397 2016 K2-28 b 0.207 0.0214 2015 K2-29 b 0.73 1.19 0.04217 2016 K2-3 b 0.026 0.194 0.0775 2015 K2-3 c 0.0066 0.165 0.1405 2015 K2-3 d 0.0349 0.135 0.2086 2015 K2-30 b 0.624 1.196 0.04986 2016 K2-31 b 1.774 1.06 0.022 2016 K2-32 b 0.0519 0.48 0.0808 2015 K2-32 c 0.04 0.31 0.1407 2015 K2-32 d 0.0343 0.335 0.1873 2015 K2-33 b 3.6 0.451 0.0409 2016 K2-34 b 1.78 1.35 0.04419 2016 K2-35 b 0.0964 0.0306 2015 K2-35 c 0.151 0.0539 2015 K2-39 b 0.125 0.73 0.062 2016 K2-4 b 0.211 0.0777 2015 K2-5 b 0.171 0.0509 2015 K2-5 c 0.171 0.0783 2015 K2-55 b 0.138 0.3952 0.0347 2018 K2-6 b 0.223 0.1898 2015 K2-60 b 0.426 0.683 0.045 2016 K2-66 b 0.067 0.222 0.05983 2017 K2-7 b 0.238 0.1814 2015 K2-77 b 1.9 0.205 2016 K2-8 b 0.319 0.0856 2015 K2-9 b 0.143 0.0848 2015 K2-95 b 1.67 0.33 0.0653 2016 K2-97 b 1.1 1.31 2016 K2-99 b 0.97 1.29 0.159 2016 KELT-1 b 27.38 1.116 0.02472 2012 KELT-10 b 0.679 1.399 0.0525
Recommended publications
  • The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P
    The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P. Fitzgerald (University of California, Los Angeles; mpfi[email protected]) Co-authors: Diego) Vanessa Bailey (Jet Propulsion Laboratory) Takayuki Kotani (Astrobiology Center/NAOJ) Christoph Baranec (University of Hawaii) David Lafreniere` (Universite´ de Montreal)´ Natasha Batalha (University of California Santa Michael Liu (University of Hawaii) Cruz) Julien Lozi (Subaru) Bjorn¨ Benneke (Universite´ de Montreal)´ Jessica R. Lu (University of California, Berkeley) Charles Beichman (California Institute of Jared Males (University of Arizona) Technology) Mark Marley (NASA Ames Research Center) Timothy Brandt (University of California, Santa Christian Marois (NRC Canada) Barbara) Dimitri Mawet (California Institute of Jeffrey Chilcote (Notre Dame) Technology/JPL) Mark Chun (University of Hawaii) Benjamin Mazin (University of California Santa Ian Crossfield (MIT) Barbara) Thayne Currie (NASA Ames Research Center) Maxwell Millar-Blanchaer (Jet Propulsion Kristina Davis (University of California Santa Laboratory) Barbara) Soumen Mondal (SN Bose National Centre for Richard Dekany (California Institute of Technology) Basic Sciences) Jacques-Robert Delorme (California Institute of Naoshi Murakami (Hokkaido University) Technology) Ruth Murray-Clay (University of California, Santa Ruobing Dong (University of Victoria) Cruz) Rene Doyon (Universite´ de Montreal)´ Norio Narita (Astrobiology Center) Courtney Dressing
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • A 12-Year Activity Cycle for HD 219134 3
    Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 5/2/11 A 12-YEAR ACTIVITY CYCLE FOR THE NEARBY PLANET HOST STAR HD 219134 Marshall C. Johnson1, Michael Endl1, William D. Cochran1, Stefano Meschiari1, Paul Robertson2,3,4, Phillip J. MacQueen1, Erik J. Brugamyer1, Caroline Caldwell5, Artie P. Hatzes6, Ivan Ram´ırez1, and Robert A. Wittenmyer7,8,9 Accepted for publication in ApJ ABSTRACT The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. (2015) and Vogt et al. (2015) to host several planets, the innermost of which is transiting. We present twenty-seven years of radial velocity observations of this star from the McDonald Observatory Planet Search program, and nineteen years of stellar activity data. We detect a long-period activity cycle measured in the Ca ii SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11-year Solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al. (2015), suggesting that this radial velocity signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our radial velocities allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b.
    [Show full text]
  • Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star
    1 Temperate Earth-sized planets transiting a nearby ultracool dwarf star Michaël Gillon1, Emmanuël Jehin1, Susan M. Lederer2, Laetitia Delrez1, Julien de Wit3, Artem Burdanov1, Valérie Van Grootel1, Adam J. Burgasser4, Amaury H. M. J. Triaud5, Cyrielle Opitom1, Brice-Olivier Demory6, Devendra K. Sahu7, Daniella Bardalez Gagliuffi4, Pierre Magain1 & Didier Queloz6 1Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium. 2NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas, 77058, USA. 3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. 4Center for Astrophysics and Space Science, University of California San Diego, La Jolla, California 92093, USA. 5Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK. 6Astrophysics Group, Cavendish Laboratory, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK. 7Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India. Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs'1. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun2. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disk3,4, there should be a large but hitherto undetected population of terrestrial planets orbiting them5—ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report observations of three short-period Earth-sized planets transiting an 2 ultracool dwarf star only 12 parsecs away.
    [Show full text]
  • The Solar Neighborhood VI: New Southern Stars Identified by Optical
    To appear in the April 2002 issue of the Astronomical Journal The Solar Neighborhood VI: New Southern Nearby Stars Identified by Optical Spectroscopy Todd J. Henry1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 Lucianne M. Walkowicz Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 Todd C. Barto1 Lockheed Martin Aeronautics Company, Boulder, CO 80306 and David A. Golimowski Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 ABSTRACT Broadband optical spectra are presented for 34 known and candidate nearby stars in the southern sky. Spectral types are determined using a new method that compares the entire spectrum with spectra of more than 100 standard stars. We estimate distances to 13 candidate nearby stars using our spectra and new or published photometry. Six of these stars are probably within 25 pc, and two are likely to be within the RECONS horizon of 10 pc. arXiv:astro-ph/0112496v1 20 Dec 2001 Subject headings: stars: distances — stars: low mass, brown dwarfs — white dwarfs — surveys 1. Introduction The nearest stars have received renewed scrutiny because of their importance to fundamental astrophysics (e.g., stellar atmospheres, the mass content of the Galaxy) and because of their poten- tial for harboring planetary systems and life (e.g., the NASA Origins and Astrobiology initiatives). 1Visiting Astronomer, Cerro Tololo Inter-American Observatory. CTIO is operated by AURA, Inc. under contract to the National Science Foundation. – 2 – The smallest stars, the M dwarfs, account for at least 70% of all stars in the solar neighborhood and make up nearly half of the Galaxy’s total stellar mass (Henry et al.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-Like Star HD 108236
    Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 2-1-2021 TESS Discovery Of A Super-Earth And Three Sub-Neptunes Hosted By The Bright, Sun-Like Star HD 108236 T. Daylan K. Pinglé J. Wright M. N. Günther K. G. Stassun Follow this and additional works at: https://works.swarthmore.edu/fac-physics See P nextart of page the forAstr additionalophysics andauthors Astr onomy Commons Let us know how access to these works benefits ouy Recommended Citation T. Daylan, K. Pinglé, J. Wright, M. N. Günther, K. G. Stassun, S. R. Kane, A. Vanderburg, D. Jontof-Hutter, J. E. Rodriguez, A. Shporer, C. X. Huang, T. Mikal-Evans, M. Badenas-Agusti, K. A. Collins, B. V. Rackham, S. N. Quinn, R. Cloutier, K. I. Collins, P. Guerra, Eric L.N. Jensen, J. F. Kielkopf, B. Massey, R. P. Schwarz, D. Charbonneau, J. J. Lissauer, J. M. Irwin, Ö Baştürk, B. Fulton, A. Soubkiou, B. Zouhair, S. B. Howell, C. Ziegler, C. Briceño, N. Law, A. W. Mann, N. Scott, E. Furlan, D. R. Ciardi, R. Matson, C. Hellier, D. R. Anderson, R. P. Butler, J. D. Crane, J. K. Teske, S. A. Shectman, M. H. Kristiansen, I. A. Terentev, H. M. Schwengeler, G. R. Ricker, R. Vanderspek, S. Seager, J. N. Winn, J. M. Jenkins, Z. K. Berta-Thompson, L. G. Bouma, W. Fong, G. Furesz, C. E. Henze, E. H. Morgan, E. Quintana, E. B. Ting, and J. D. Twicken. (2021). "TESS Discovery Of A Super-Earth And Three Sub-Neptunes Hosted By The Bright, Sun-Like Star HD 108236".
    [Show full text]
  • A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
    A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars.
    [Show full text]
  • Sirius Astronomer
    September 2015 Free to members, subscriptions $12 for 12 issues Volume 42, Number 9 Jeff Horne created this image of the crater Copernicus on September 13, 2005 from his observing site in Irvine. September 19 is International Observe The Moon Night, so get out there and have a look at a source of light pollution we really don’t mind! OCA MEETING STAR PARTIES COMING UP The free and open club meeng will The Black Star Canyon site will open on The next session of the Beginners be held September 18 at 7:30 PM in September 5. The Anza site will be open on Class will be held at the Heritage Mu‐ the Irvine Lecture Hall of the Hashing‐ September 12. Members are encouraged to seum of Orange County at 3101 West er Science Center at Chapman Univer‐ check the website calendar for the latest Harvard Street in Santa Ana on Sep‐ sity in Orange. This month, JPL’s Dr. updates on star pares and other events. tember 4. The following class will be Dave Doody will discuss the Grand held October 2. Finale of the historic Cassini mission to Please check the website calendar for the Saturn in 2017! outreach events this month! Volunteers are GOTO SIG: TBA always welcome! Astro‐Imagers SIG: Sept. 8, Oct. 13 NEXT MEETINGS: October 9, Novem‐ Remote Telescopes: TBA You are also reminded to check the web ber 13 Astrophysics SIG: Sept. 11, Oct. 16 site frequently for updates to the calendar Dark Sky Group: TBA of events and other club news.
    [Show full text]
  • Institut Für Weltraumforschung (IWF) Österreichische Akademie Der Wissenschaften (ÖAW) Schmiedlstraße 6, 8042 Graz, Austria
    WWW.OEAW.AC.AT ANNUAL REPORT 2018 IWF INSTITUT FÜR WELTRAUMFORSCHUNG WWW.IWF.OEAW.AC.AT ANNUAL REPORT 2018 COVER IMAGE Artist's impression of the BepiColombo spacecraft in cruise configuration, with Mercury in the background (© spacecraft: ESA/ATG medialab; Mercury: NASA/JPL). TABLE OF CONTENTS INTRODUCTION 5 NEAR-EARTH SPACE 7 SOLAR SYSTEM 13 SUN & SOLAR WIND 13 MERCURY 15 VENUS 16 MARS 17 JUPITER 18 COMETS & DUST 20 EXOPLANETARY SYSTEMS 21 SATELLITE LASER RANGING 27 INFRASTRUCTURE 29 OUTREACH 31 PUBLICATIONS 35 PERSONNEL 45 IMPRESSUM INTRODUCTION INTRODUCTION The Space Research Institute (Institut für Weltraum- ESA's Cluster mission, launched in 2000, still provides forschung, IWF) in Graz focuses on the physics of space unique data to better understand space plasmas. plasmas and (exo-)planets. With about 100 staff members MMS, launched in 2015, uses four identically equipped from 20 nations it is one of the largest institutes of the spacecraft to explore the acceleration processes that Austrian Academy of Sciences (Österreichische Akademie govern the dynamics of the Earth's magnetosphere. der Wissenschaften, ÖAW, Fig. 1). The China Seismo-Electromagnetic Satellite (CSES) was IWF develops and builds space-qualified instruments and launched in February to study the Earth's ionosphere. analyzes and interprets the data returned by them. Its core engineering expertise is in building magnetometers and NASA's InSight (INterior exploration using Seismic on-board computers, as well as in satellite laser ranging, Investigations, Geodesy and Heat Transport) mission was which is performed at a station operated by IWF at the launched in May to place a geophysical lander on Mars Lustbühel Observatory.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • A Naprendszer-Hasonlósági Index
    Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Szakdolgozat A Naprendszer-hasonlósági index Készítette: Mészáros Richárd Fizika BSc szakos hallgató Témavezető: Dr. Szatmáry Károly egyetemi tanár Szeged 2020 Tartalomjegyzék 1. Bevezetés……………………………………………………………………..2 2. Az exobolygók felfedezési módszerei………………………………………..2 2.1. Közvetlen módszerek………………………………………………..2 2.2. Közvetett módszerek………………………………………..……….3 3. Az exobolygók osztályozása………………………………………...……….6 4. A Föld-hasonlósági index…………………………………………………….7 5. A Naprendszer-hasonlósági index……………………………………………8 5.1. Első verzió……………………………………………….…………..8 5.2. Második verzió……………………………………………………..11 5.3. Eredmények……………………………………………………...…13 6. Összefoglalás………………………………………………………………..24 Köszönetnyilvánítás……………………………………………………………24 Irodalomjegyzék………………………………………………………………..25 1 1. Bevezetés A felfedezett exobolygók asztrobiológiai potenciáljának vizsgálatára 2011-ben bevezetésre került a Föld-hasonlósági index (ESI, Schulze-Makuch et al. 2011,[2]). Dolgozatom témájául a felfedezett exobolygó rendszerek hasonló módon való vizsgálatát választottam. A második és harmadik fejezetben összefoglalom az exobolygók keresési módszereit és ezen bolygók típusait. A negyedik fejezetben röviden bemutatom a Föld-hasonlósági indexet. Az ötödik fejezetben a Föld-hasonlósági index mintájára bevezetem a Naprendszer-hasonlósági index fogalmát. Ismertetem kiszámításának módját, és alkalmazom a legalább 4 bolygót tartalmazó exobolygó rendszerekre. A kapott eredményekből
    [Show full text]