Function of the B Cell Receptor Chimeric Igd And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mcb 407-Immunology and Immunochemistry-Lecture Note
MCB 407-IMMUNOLOGY AND IMMUNOCHEMISTRY-LECTURE NOTE DR. D. A. OJO BRIEF HISTORICAL REVIEW OF IMMUNOLOGY The mechanism by which antibody are formed has been debated for years. It was proposed that the specificity of an antibody molecule was determined both by its amino acid sequence but by the molding of the peptide chain around the antigenic determinant. This theory lost favour when it became apparent that antibody-forming cells were devoid of antigen and that antibody specificity was a function of amino acid sequence. At present, the CLONAL (proposed by Burnete) SELECTION THEORY is widely accepted. It holds that an immunologically responsive cell can respond to only one antigen or a closely related group of antigens and that this property is inherent in the cell before the antigen is encountered. According to the clonal selection theory, each individual is endowed with a very large pool of lymphocytes, each of which is capable of responding to a different antigen. When the antigen enters the body, it selects the lymphocyte which has the best “fit” by virtue of a surface receptor. The antigen binds to this antibody-like receptor, and the cell is stimulated to proliferate and form a clone of cells. Thus, selected cells quickly differentiate into plasma cells and secrete antibody which is specific for the antigen which served as the original selecting agent (or a closely related group of antigens). The History of Blood Transfusion Man’s centuries-long desire to perform blood transfusion as a therapeutic procedure forms the cornerstone of the modern science of immunohematology. At present time, the use of whole blood is a well-accepted and commonly employed measure without which many modern surgical procedures could not be carried out. -
Antigen –Antibody Interaction By: Dr
TDC 5TH SEM MAJOR: PAPER 5.3 ANTIGEN –ANTIBODY INTERACTION BY: DR. LUNA PHUKAN Antigen-antibody interaction, or antigen-antibody reaction, is a specific chemical interaction between antibodies produced by B cells of the white blood cells and antigens during immune reaction. The antigens and antibodies combine by a process called agglutination Antigen-antibody interaction, or antigen-antibody reaction, is a specific chemical interaction between antibodies produced by B cells of the white blood cells and antigens during immune reaction. The antigens and antibodies combine by a process called agglutination. It is the fundamental reaction in the body by which the body is protected from complex foreign molecules, such as pathogens and their chemical toxins. In the blood, the antigens are specifically and with high affinity bound by antibodies to form an antigen- antibody complex. The immune complex is then transported to cellular systems where it can be destroyed or deactivated. The first correct description of the antigen-antibody reaction was given by Richard J. Goldberg at the University of Wisconsin in 1952. It came to be known as "Goldberg's theory" (of antigen-antibody reaction) There are several types of antibodies and antigens, and each antibody is capable of binding only to a specific antigen. The specificity of the binding is due to specific chemical constitution of each antibody. The antigenic determinant or epitope is recognized by the paratope of the antibody, situated at the variable region of the polypeptide chain. The variable region in turn has hyper-variable regions which are unique amino acid sequences in each antibody. -
Subdominant CD8 T-Cell Epitopes Account for Protection Against Cytomegalovirus Independent of Immunodominationᰔ† Rafaela Holtappels,1* Christian O
JOURNAL OF VIROLOGY, June 2008, p. 5781–5796 Vol. 82, No. 12 0022-538X/08/$08.00ϩ0 doi:10.1128/JVI.00155-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Subdominant CD8 T-Cell Epitopes Account for Protection against Cytomegalovirus Independent of Immunodominationᰔ† Rafaela Holtappels,1* Christian O. Simon,1 Michael W. Munks,2‡ Doris Thomas,1 Petra Deegen,1 Birgit Ku¨hnapfel,1 Torsten Da¨ubner,1 Simone F. Emde,1 Ju¨rgen Podlech,1 Natascha K. A. Grzimek,1 Silke A. Oehrlein-Karpi,1 Ann B. Hill,2 and Matthias J. Reddehase1 Institute for Virology, Johannes Gutenberg University, 55131 Mainz, Germany,1 and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 972392 Received 22 January 2008/Accepted 17 March 2008 Cytomegalovirus (CMV) infection continues to be a complication in recipients of hematopoietic stem cell transplantation (HSCT). Preexisting donor immunity is recognized as a favorable prognostic factor for the reconstitution of protective antiviral immunity mediated primarily by CD8 T cells. Furthermore, adoptive transfer of CMV-specific memory CD8 T (CD8-TM) cells is a therapeutic option for preventing CMV disease in HSCT recipients. Given the different CMV infection histories of donor and recipient, a problem may arise from an antigenic mismatch between the CMV variant that has primed donor immunity and the CMV variant acquired by the recipient. Here, we have used the BALB/c mouse model of CMV infection in the immunocom- promised host to evaluate the importance of donor-recipient CMV matching in immundominant epitopes (IDEs). For this, we generated the murine CMV (mCMV) recombinant virus mCMV-⌬IDE, in which the two memory repertoire IDEs, the IE1-derived peptide 168-YPHFMPTNL-176 presented by the major histocom- patibility complex class I (MHC-I) molecule Ld and the m164-derived peptide 257-AGPPRYSRI-265 presented d by the MHC-I molecule D , are both functionally deleted. -
A Challenging Case of Igd Kappa Multiple Myeloma Associated with Primary Amyloidosis: Importance of Serum Free Light Chains in M
L al of euk rn em u i o a J Journal of Leukemia García de Veas Silva JL et al, J Leuk 2014, 2:5 ISSN: 2329-6917 DOI: 10.4172/2329-6917.1000164 Case Report Open Access A Challenging Case of IgD Kappa Multiple Myeloma Associated With Primary Amyloidosis: Importance of Serum Free Light Chains in Monitoring Treatment Response and Disease Relapse José Luis García de Veas Silva1*, Carmen Bermudo Guitarte1, Paloma Menéndez Valladares1, Rafael Duro Millán2 and Johanna Carolina Rojas Noboa2 1Department of Clinical Biochemistry, Hospital Universitario Virgen Macarena, Sevilla, Spain 2Department of Hematology, Hospital Universitario Virgen Macarena, Sevilla, Spain *Corresponding author: José Luis García de Veas Silva, Laboratory of Proteins, Department of Clinical Biochemistry, Hospital Universitario Virgen Macarena, Sevilla, Spain, Tel: +034955008108; E-mail: [email protected] Rec date: Oct 10, 2014, Acc date: Oct 16, 2014; Pub date: Oct 24, 2014 Copyright: © 2014 García de Veas Silva JL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Multiple Myeloma (MM) is a malignancy of B cells characterized by an atypical proliferation of plasma cells. IgD MM has a very low incidence (2% of total MM cases) and it´s characterized by an aggressive course and a worse prognosis than other subtypes. The serum free light chains (sFLC) are very important markers for monitoring patients with MM and other monoclonal gammopathies. When the sFLC are present in low concentrations, it is often difficult to detect them by conventional methods such as serum protein electrophoresis and serum immunofixation. -
PLATELIA™ TOXO Igg AVIDITY 72842
PLATELIA™ TOXO IgG AVIDITY 48 72842 DETERMINATION OF ANTI-TOXOPLASMA GONDII IgG AVIDITY IN HUMAN SERUM BY ENZYME IMMUNOASSAY 881130 - 2013/11 Table of Content 1- INTENDED USE ...............................................................................3 2- CLINICAL VALUE ............................................................................3 3- PRINCIPLE ......................................................................................4 4- PRODUCT INFORMATION ..............................................................5 5- WARNINGS AND PRECAUTIONS ..................................................5 6- SAMPLES ........................................................................................7 7- ASSAY PROCEDURE ......................................................................7 8- INTERPRETATION OF RESULTS .................................................10 9- PERFORMANCES .........................................................................11 10- LIMITATIONS OF THE PROCEDURE ...........................................13 11- QUALITY CONTROL OF THE MANUFACTURER .........................13 12- REFERENCES ...............................................................................14 2 [EN] 1. INTENDED USE Platelia™ TOXO IgG AVIDITY is an immuno-enzyme assay for determination of avidity of anti-T. gondii IgG antibodies in human serum. The Platelia™ TOXO IgG AVIDITY assay should be used in association with the Platelia™ TOXO IgG kit (Ref. 72840). 2. CLINICAL VALUE T. gondii is a protozoan causing infection in numerous -
Enzyme Immunoassays for the Diagnostics of Toxoplasmosis
INFECTIOUS SEROLOGY – PARASITOLOGY – Toxoplasma gondii FOLLOW US FOLLOW US Toxoplasma gondii Enzyme immunoassays for the diagnostics of toxoplasmosis ELISA and IMMUNOBLOT kits are optimized and validated for detection of IgA, IgE, IgG and IgM antibodies in human serum and plasma BIOVENDOR.GROUP INFECTIOUS SEROLOGY – PARASITOLOGY – Toxoplasma gondii Introduction Diagnosis of infection Toxoplasmosis is a widespread parasitic disease cau- Diagnosis of the disease is based on epidemiological sed by protozoan Toxoplasma gondii – a parasite with anamnesis, clinical manifestation and laboratory tests. a complicated life cycle consisting of several morpho- Direct detection of the parasite is not available for rou- logically different stadia. Primary hosts are members of tine diagnostics. Serology is the most important tool for the feline family. Humans and most warm-blooded ani- laboratory diagnostics of toxoplasmosis. mals can be infected by either primarily infected food – Screening – determination of total antibodies by (insufficiently heat-treated meat) or by ingestion of oo- complement fixation test (CFT) cysts (secondary contaminated food or contaminated – Determination of specific IgA, IgE, IgM, IgG fingers, objects, etc.). antibodies and IgG avidity by ELISA and confirmation Acquired toxoplasmosis in immunocompetent indi- of results by Immunoblot viduals is usually asymptomatic or can manifest itself with flu-like symptoms (subfebrility, fatigue, lymphade- nopathy, muscle aches) and has no lasting ill effects. Severe life-threatening infections (encephalitis, hepati- tis, chorioretinitis, myocarditis, generalized form of the disease) may develop in immunocompromised patients usually because of a reactivation of a latent infection. Congenital toxoplasmosis is caused by transmission of infection from mother to foetus and it might result in severe damages of the foetus (brain calcification, hydrocepha- lus, vision disorders, mental affections), still birth or abortion. -
Igd Class Switch Recombination Is Not Controlled Through the Immunoglobulin Heavy Chain 3&Prime
Cellular & Molecular Immunology (2017) 14, 871–874 & 2017 CSI and USTC All rights reserved 2042-0226/17 $32.00 www.nature.com/cmi LETTER TO THE EDITOR IgD class switch recombination is not controlled through the immunoglobulin heavy chain 3′ regulatory region super-enhancer Hussein Issaoui1, Nour Ghazzaui1, Alexis Saintamand2, Yves Denizot and François Boyer Cellular & Molecular Immunology (2017) 14, 871–874; doi:10.1038/cmi.2017.81; published online 4 September 2017 n secondary lymphoid organs, mature enigmatic event restricted to a few B-cell 3’RR-deficient mouse B cells were used IB cells express membrane immuno- subsets in specific lymphoid tissues (such for these experiments. In some experi- globulin (Ig) of M and D isotypes (IgM as mesenteric lymph nodes, peritoneal ments, 3′RR-deficient mice were and IgD, respectively) of the same spe- cavity and mucosa-associated tissue) in pristane-treated (1 ml) for 2 months to cificity through alternative splicing of a both mice and humans.3–5 A recent induce inflammation prior to the recov- pre-mRNA encompassing the VDJ vari- study suggested that IgD CSR is initiated ery of peritoneal cavity cells. As pre- 5 4 able region and Cμ and Cδ heavy chain by microbiota, demonstrating a role for viously described in detail, junctions constant exons.1 After encountering anti- IgD in the homeostatic regulation of the were amplified using touchdown PCR gen, B cells undergo class switch recom- microbial community. The mechanistic followed by nested PCR. Libraries of bination (CSR) by which the Cμ gene is regulation of IgD CSR remains enig- 200 bp were prepared from the 1–2kb substituted with Cγ, Cε or Cα, thereby matic, reflecting the difficulty to obtain PCR products of Sμ–σδ amplification for generating IgG, IgE and IgA antibodies asufficient number of Sμ–σδ (σ for ion proton sequencing (‘GénoLim plat- of the same antigenic specificity but with S-like) junction sequences for molecular form’ of the Limoges University, France). -
Clinical Significance of Igg Avidity Testing and Other
medical sciences Review Clinical Significance of IgG Avidity Testing and Other Considerations in the Diagnosis of Congenital Cytomegalovirus Infection: A Review Update Idris Abdullahi Nasir 1,2,*, Adamu Babayo 3 and Muhammad Sagir Shehu 4 1 Department of Medical Laboratory Services, University of Abuja Teaching Hospital, Gwagwalada, FCT Abuja PMB 228, Nigeria 2 Department of Medical Microbiology and Parasitology, College of Health Sciences, University of Ilorin, PMB 1515 Ilorin, Nigeria 3 Department of Medical Microbiology, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi PMB 0117, Nigeria; [email protected] 4 Immunology unit, Department of Medicine, Ahmadu Bello University, PMB 05 Zaria, Kaduna State, Nigeria; [email protected] * Correspondence: [email protected]; Tel.: +234-8030522324; Fax: +234-8055982223 Academic Editor: Hung-Yun Lin Received: 24 November 2015; Accepted: 3 March 2016; Published: 8 March 2016 Abstract: Prompt and accurate laboratory testing of women before or during antenatal days is necessary for detecting humoral immunological responses against cytomegalovirus (CMV) infection and assessing risk of congenital transmission. CMV is the most common viral etiology with the greatest propensity to induce neonatal pathologies. Most healthcare facilities in developing countries rely solely on anti-CMV IgM and IgG assays in diagnosing CMV infections. However, these parameters have some worrisome limitations. This study reviewed the significance of IgG avidity testing as a highly sensitive and specific tool that improves decisions regarding diagnosis of maternal and congenital CMV infections. We conducted this review from relevant published articles using an extensive literature search made through PubMed, Scopus and Google scholar on the concepts of congenital CMV (CCMV) transmission and clinical significance of IgG avidity testing in diagnosis of CCMV infections. -
Immunoglobulin D-Lambda Multiple Myeloma, and a Review of the Literature Aissam EL MAATAOUI*, Salma FARES and Aadil TAOUFIK
ISSN: 2378-3656 MAATAOUI et al. Clin Med Rev Case Rep 2021, 8:341 DOI: 10.23937/2378-3656/1410341 Volume 8 | Issue 3 Clinical Medical Reviews Open Access and Case Reports CASE REPORT Immunoglobulin D-Lambda Multiple Myeloma, and a Review of the Literature Aissam EL MAATAOUI*, Salma FARES and Aadil TAOUFIK Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco Check for updates *Corresponding author: Aissam EL MAATAOUI, Faculty of medicine and pharmacy, Ibn Zohr University, Agadir, Morocco MM. It is characterized by the high preponderance of Abstract lambda light chains over kappa light chains [3]. IgD multiple myeloma (MM) is a rare plasma cell neoplasm, considered to have a poor prognosis compared to the other Patients with IgD myeloma presented more often isotypes. Many studies reported an advanced stage at the with features of high-risk disease, that is, with advanced presentation. In contrast to these studies, we report a case ISS (International staging system), high LDH (lactate de- of rare IgD-Lambda MM at the early stage. The laboratory data showed no hypercalcemia, without any renal impair- hydrogenase), significant renal dysfunction, and large ment, or monoclonal spike (M-spike or paraprotein) at the amounts of Bence jones proteinuria [1,3]. Response to Serum protein electrophoresis (SEP) but only a hypogam- primary therapy was similar to other patients, although maglobulinemia. IF is performed with antisera to IgG, IgA, there was a trend for better quality of responses in pa- IgM, total kappa and total lambda(anti-γ, anti-α and an- ti-µ heavy chains, and anti-κ and anti-λ total light chains) tients with IgD myeloma [3]. -
Immunoglobulin D Enhances Interleukin-6 Release from the KU812 Human Prebasophil Cell Line
Gen. Physiol. Biophys. (2003), 22, 255—263 255 Immunoglobulin D Enhances Interleukin-6 Release from the KU812 Human Prebasophil Cell Line B. Sechet1, A. Meseri-Delwail1,M.Arock2,J.Wijdenes3, J.-C. Lecron1 and D. Sarrouilhe1 1 Laboratoire Cytokines, FRE CNRS 2224, IBMIG, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France 2 Laboratoire d’Hématologie Cellulaire, Faculté de Pharmacie, 4 avenue de l’observatoire, 75006 Paris, France 3 Diaclone, 1 boulevard Fleming, BP 1985, 25020 Besancon Cedex, France Abstract. Despite the role of secreted immunoglobulin D (IgD) remains still largely unknown, previous studies have suggested that secreted IgD could induce basophils degranulation in some allergic asthma patients. In the present study we have searched direct evidence of the action of IgD on KU812 cells, generally classified as an immature basophilic cell line. We analyzed by flow cytometry the capacity of IgD, purified from IgD myeloma sera, to bind KU812 cells. Biotiny- lated monomeric IgD (mIgD) and biotinylated oligomeric IgD (oIgD) could bind KU812 cells. Blocking experiments with others immunoglobulin isotypes showed that KU812 cells expressed an unspecific receptor for IgD. However, oIgD but not mIgD enhances the release of interleukin-6 (IL-6) from KU812 cells. On the other hand, mIgD and oIgD failed to induce histamine release from KU812 cells or from cord blood derived basophils. Since IL-6 is known to induce basophil differentiation, we proposed that IgD could be implicated in allergic disorders by stimulating IL-6 release by prebasophil cells, then IL-6 could further induce an autocrine maturation of the cells. Key words: Immunoglobulin D — Prebasophil — Interleukin-6 — Flow cytometry — Histamine Introduction Since the discovery of immunoglobulin D (IgD) in 1965, studies have mainly been focused on membrane IgD which is a major component of the B cell antigen receptor (BCR). -
Immunoglobulin D Undergoes Placental Transfer to the Fetus
Wayne State University Wayne State University Theses January 2019 Immunoglobulin D Undergoes Placental Transfer To The Fetus Michael David Pawlitz Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses Part of the Immunology and Infectious Disease Commons Recommended Citation Pawlitz, Michael David, "Immunoglobulin D Undergoes Placental Transfer To The Fetus" (2019). Wayne State University Theses. 716. https://digitalcommons.wayne.edu/oa_theses/716 This Open Access Embargo is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. IMMUNOGLOBULIN D UNDERGOES PLACENTAL TRANSFER TO THE FETUS by MICHAEL DAVID PAWLITZ THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2019 MAJOR: IMMUNOLOGY & MICROBIOLOGY Approved By: _____________________________________ Advisor Date © COPYRIGHT BY MICHAEL DAVID PAWLITZ 2019 All Rights Reserved ACKNOWLEDGMENTS There are plenty individuals in my life that deserve to be acknowledged for their support during the pursuit of my graduate studies. First and foremost, I would like to thank my mentor, Dr. Kang Chen, who has been a superlative role model to me. He has provided me with phenomenal insight throughout the entirety of my research project. I cannot thank him enough for all his time and effort that was devoted towards my graduate studies. Additionally, I would like to thank all members of the Chen lab, past and present, who have also taught me and helped me along the way to become a better researcher. -
4 Antibodies from Other Species Melissa L
85 4 Antibodies from Other Species Melissa L. Vadnais1, Michael F. Criscitiello2, and Vaughn V. Smider1 1Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA 2Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, 400 Raymond Stotzer Parkway, College Station, TX 77843, USA 4.1 Introduction Immunoglobulins are the molecular basis of humoral immunity. Across different species, these macromolecules maintain a common quaternary structure, which is typically comprised of two identical heavy chains with covalently attached oligosaccharide groups and two identical non-glycosylated, light chains. These glycoprotein molecules recognize and bind a particular antigen in a highly complex and exceedingly specific immune response. Antibodies are the primary protective molecules elicited by most vaccines, and recombinant antibodies are now a major class of therapeutics for multiple diseases. The earliest antibody therapeutics were derived from serum of nonhuman species. In particular, horse serum served as anti-venom yet had substantial toxicity (serum sickness) due totheimmuneresponseagainstthenonhumanantibodyprotein[1,2].Other antibody preparations such as anti-thymocyte globulin produced in rabbit had therapeutic benefit but also had significant toxicity. The use of alternative species for these therapeutic preparations was largely due to ease of production, as they were developed prior to the advent of modern molecular biology techniques, which have enabled rapid discovery and engineering of recombinant antibodies. Thus, most current approaches for producing recombinant antibodies rely on humanizing antibodies derived from other species, usually mice, or beginning with human scaffolds engineered into libraries or transgenic “humanized” mice. Recently, however, novel features of antibodies derived from other species have sparked interest in developing antibodies that may have particular unique features in binding certain antigens or epitopes [3–7].