Chloroform Risk Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Chloroform Risk Assessment EU RISK ASSESSMENT – C HLOROFORM CAS 67-66-3 COVER CHLOROFORM CAS-No.: 67-66-3 EINECS-No.: 200-663-8 RISK ASSESSMENT Final Report (2007) France Rapporteur for the risk evaluation of chloroform is the Ministry for the Protection of Nature and the Environment as well as the Ministry of Employment and Social Affairs in co-operation with the Ministry of Public Health. Responsible for the risk evaluation and subsequently for the contents of this report is the rapporteur. The scientific work on this report has been prepared by the National Institute for Research and Security (INRS) as well as the National Institute for Industrial Environment and Risks (INERIS), by order of the rapporteur. Contact point: INERIS INRS DRC/ECOT SCP Parc Technologique ALATA 30, rue Olivier Noyer BP N° 2 75680 Paris CEDEX 14 60550 Verneuil en Halatte FRANCE FRANCE RAPPORTEUR F RANCE I ESR R EPORT DRAFT OF JUNE 2007 EU RISK ASSESSMENT – C HLOROFORM CAS 67-66-3 COVER Foreword to Draft Risk Assessment Reports This Draft Risk Assessment Report is carried out in accordance with Council Regulation (EEC) 793/93 1 on the evaluation and control of the risks of “existing” substances. Regulation 793/93 provides a systematic framework for the evaluation of the risks to human health and the environment of these substances if they are produced or imported into the Community in volumes above 10 tonnes per year. There are four overall stages in the Regulation for reducing the risks: data collection, priority setting, risk assessment and risk reduction. Data provided by Industry are used by Member States and the Commission services to determine the priority of the substances which need to be assessed. For each substance on a priority list, a Member State volunteers to act as “Rapporteur”, undertaking the in-depth Risk Assessment and recommending a strategy to limit the risks of exposure to the substance, if necessary. The methods for carrying out an in-depth Risk Assessment at Community level are laid down in Commission Regulation (EC) 1488/94 2 which is supported by a technical guidance document 3. Normally, the “Rapporteur” and individual companies producing, importing and/or using the chemicals work closely together to develop a draft Risk Assessment Report, which is then presented to the Competent Group of Member State experts for endorsement. Observers from Industry, Consumer Organisations, Trade Unions, Environmental Organisations and certain International Organisations are also invited to attend the meetings. The Risk Assessment Report is then peer-reviewed by the Scientific Committee on Toxicity, Eco-toxicity and the Environment (SCTEE) which gives its opinion to the European Commission on the quality of the risk assessment. This Draft Risk Assessment Report is currently under discussion in the Competent Group of Member State experts with the aim of reaching consensus. In doing so, the scientific interpretation of the underlying information may change, more information may be included and even the conclusions reached in this draft may change. Competent Group of Member State experts seek as wide a distribution of these drafts as possible, in order to assure as complete and accurate an information basis as possible. The information contained in this Draft Risk Assessment Report therefore does not necessarily provide a sound basis for decision making regarding the hazards, exposures or the risks associated with the priority substance. This Draft Risk Assessment Report is the responsibility of the Member State rapporteur. In order to avoid possible misinterpretations or misuse of the findings in this draft, anyone wishing to cite, quote or copy this report must obtain the permission of the Member State rapporteur beforehand. 1 O.J. No L 084, 05/04/199 p. 0001 - 0075 2 O.J. No. L 161, 29/06/1994 p. 0003 – 0011 3 Technical Guidance Document, Part I-V, ISBN 92-827-801[1234] RAPPORTEUR F RANCE II ESR R EPORT DRAFT OF JUNE 2007 EU RISK ASSESSMENT – C HLOROFORM CAS 67-66-3 COVER Contact Details of the Rapporteur Rapporteur: France Contact (environment): Institut National de l’Environnement Industriel et des Risques (INERIS) Direction des Risques Chroniques Unité Evaluation des Risques Ecotoxicologiques Parc Technologique ALATA BP n°2 60550 Verneuil-en-Halatte France RAPPORTEUR F RANCE III ESR R EPORT DRAFT OF JUNE 2007 EU RISK ASSESSMENT – C HLOROFORM CAS 67-66-3 COVER 0. OVERALL RESULTS OF THE RISK ASSESSMENT CAS Number: 67-66-3 EINECS Number: 200-663-8 IUPAC Name : Chloroform Environment This risk assessment has been performed with site-specific data when available and the exposure assessment is therefore only valid for the sites considered in this evaluation. Any change of technology at these sites or any new site will lead to different exposure calculations and thus will have to be evaluate on a case by case basis. Conclusions to the risk assessment for the aquatic compartment Conclusion (iii) There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account Conclusion (iii) is applied to the use of chloroform as a solvent. As the PEC estimation is based on monitoring data and the improvement of the PNEC might not be sufficient to decrease the ratio, it is necessary to limit the risk from now on for this application. Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already Conclusion (ii) is applied to all levels of the life cycle of chloroform: production, all uses (except its use as a solvent) and unintended releases of chloroform due to losses as a by-product during chemical manufacturing. Conclusions to the risk assessment for the sediment compartment Conclusion (iii) There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account Conclusion (iii) is applied to the use of chloroform as a solvent. As additional toxicity testings on sediment organisms requested under article 10(2) do not permit to decrease the PEC/PNECratio below 1, it is necessary to limit the risk from now on for this application. Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already Conclusion (ii) is applied to all levels of the life cycle of chloroform: production, all uses (except its use as a solvent) and unintended releases of chloroform due to losses as a by-product during chemical manufacturing. Conclusions to the risk assessment for the sewage compartment Conclusion (iii) There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account Conclusion (iii) is applied to production sites A, C, E and J, to all uses and unintended releases. Given that toxicity testings on micro-organisms requested under article 10(2) were not valid, the exposure assessment could not be refined and risks still remain. It is therefore necessary to limit the risk from now on. EU RISK ASSESSMENT – C HLOROFORM CAS 67-66-3 COVER Conclusions to the risk assessment for the atmosphere compartment Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already Conclusions to the risk assessment for the terrestrial compartment Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already It should be noticed that the assessment considers that sludge from chloroform and HCFC production sites are not applied on agricultural soils. Conclusions to the risk assessment for non-compartment specific effects relevant to the food chain Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already RAPPORTEUR F RANCE V ESR R EPORT DRAFT OF JUNE 2007 EU RISK ASSESSMENT – C HLOROFORM CAS 67-66-3 CONTENTS CONTENTS 0. OVERALL RESULTS OF THE RISK ASSESSMENT ................................ IV 1. GENERAL SUBSTANCE INFORMATION .....................................................6 1.1. IDENTIFICATION OF THE SUBSTANCE.....................................................................6 1.2. PURITY/IMPURITIES, ADDITIVES ...............................................................................6 1.3. PHYSICO-CHEMICAL PROPERTIES ...........................................................................7 1.3.1. Melting point.................................................................................................................7 1.3.2. Boiling point..................................................................................................................7 1.3.3. Relative density.............................................................................................................7 1.3.4. Vapour pressure ............................................................................................................7 1.3.5. Surface tension..............................................................................................................7 1.3.6. Water solubility.............................................................................................................8 1.3.7. Henry’s law constant.....................................................................................................8 1.3.8. Partition coefficient octanol water................................................................................8
Recommended publications
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • The Effects of the Morphine Analogue Levorphanol on Leukocytes: Metabolic Effects at Rest and During Phagocytosis
    The effects of the morphine analogue levorphanol on leukocytes: Metabolic effects at rest and during phagocytosis Nancy Wurster, … , Penelope Pettis, Sharon Lebow J Clin Invest. 1971;50(5):1091-1099. https://doi.org/10.1172/JCI106580. Studies on bacteria have suggested that morphine-like drugs have effects on the cell membrane. To determine the effect of this class of drugs on a mammalian cell, we selected the rabbit peritoneal exudate granulocyte, which undergoes striking membrane changes during phagocytosis. We examined the effect in vitro of the morphine analogue, levorphanol on phagocytosis and metabolism by granulocytes incubated with and without polystyrene particles or live Escherichia coli. Levorphanol (1 or 2 mmoles/liter) decreased: (a) acylation of lysolecithin or lysophosphatidylethanolamine in the medium (which is stimulated about two-fold during phagocytosis) both at rest (40%) and during phagocytosis (60%); (b) uptake of latex particles and Escherichia coli, as judged by electron microscopy; (c) killing of live Escherichia coli (10-fold); (d) 14 14 + CO2 production from glucose-1- C during phagocytosis by at least 80%; (e) K content of granulocytes (35%); (f) oxidation of linoleate-1-14C by 50%, and its incorporation into triglyceride by more than 80%. However, levorphanol stimulated 2 to 3-fold the incorporation of linoleate-1-14C or palmitate-1-14C into several phospholipids. Glucose uptake, lactate production, and adenosine triphosphate (ATP) content are not affected by the drug. Thus, levorphanol does not appear to exert its effects through generalized metabolic suppression. Removal of levorphanol by twice resuspending the granulocytes completely reverses all inhibition. In line with observations on bacteria, it appears that the complex effects of levorphanol on […] Find the latest version: https://jci.me/106580/pdf The Effects of the Morphine Analogue Levorphanol on Leukocytes METABOLIC EFFECTS AT REST AND DURING PHAGOCYTOSIS NANcY WuRsTE, PETER ELSBACH, ERIc J.
    [Show full text]
  • The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies
    International Journal of Molecular Sciences Article The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies Aleksandra Szopa 1,* , Karolina Bogatko 1, Mariola Herbet 2 , Anna Serefko 1 , Marta Ostrowska 2 , Sylwia Wo´sko 1, Katarzyna Swi´ ˛ader 3, Bernadeta Szewczyk 4, Aleksandra Wla´z 5, Piotr Skałecki 6, Andrzej Wróbel 7 , Sławomir Mandziuk 8, Aleksandra Pochodyła 3, Anna Kudela 2, Jarosław Dudka 2, Maria Radziwo ´n-Zaleska 9, Piotr Wla´z 10 and Ewa Poleszak 1,* 1 Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.B.); [email protected] (A.S.); [email protected] (S.W.) 2 Chair and Department of Toxicology, Medical University of Lublin, 8 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (M.H.); [email protected] (M.O.); [email protected] (A.K.) [email protected] (J.D.) 3 Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.S.);´ [email protected] (A.P.) 4 Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Sm˛etnaStreet, PL 31–343 Kraków, Poland; [email protected] 5 Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; [email protected] Citation: Szopa, A.; Bogatko, K.; 6 Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, Herbet, M.; Serefko, A.; Ostrowska, 13 Akademicka Street, PL 20–950 Lublin, Poland; [email protected] M.; Wo´sko,S.; Swi´ ˛ader, K.; Szewczyk, 7 Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; B.; Wla´z,A.; Skałecki, P.; et al.
    [Show full text]
  • Levorphanol Tartrate Injection Levorphanol Tartrate
    4104 Levonorgestrel / Official Monographs USP 36 Column: 4-mm × 15-cm; packing L7 IdentificationÐ Flow rate: 1 mL/min A: Infrared Absorption 〈197K〉ÐObtain the test specimen Injection size: 100 µL as follows. Dissolve 50 mg in 25 mL of water in a 125-mL System suitability separator. Add 2 mL of 6 N ammonium hydroxide, extract Sample: Standard solution with 25 mL of chloroform, and filter the chloroform extract [NOTEÐThe relative retention times for ethinyl estradiol through a layer of 4 g of granular anhydrous sodium sulfate and levonorgestrel are about 0.7 and 1.0, supported on glass wool into a 125-mL conical flask. Evapo- respectively.] rate the chloroform extract on a steam bath with the aid of Suitability requirements a stream of nitrogen to dryness. Dissolve the residue in 1 mL Relative standard deviation: NMT 3.0% of acetone, and evaporate to dryness. Dry in vacuum at 90° Analysis for 1 hour. Proceed as directed with the dried levorphanol Samples: Standard solution and Sample solution so obtained and a similar preparation of USP Levorphanol Calculate the percentage of C21H28O2 and C20H24O2 Tartrate RS. dissolved: B: Ultraviolet Absorption 〈197U〉Ð Result = (rU/rS) × (CS/CU) × 100 Solution: 130 µg per mL. Medium: 0.1 N hydrochloric acid. rU = peak response of the corresponding analyte Absorptivities at 279 nm, calculated on the anhydrous ba- from the Sample solution sis, do not differ by more than 3.0%. rS = peak response of the corresponding analyte Specific rotation 〈781S〉: between −14.7° and −16.3°. from the Standard solution Test solution: 30 mg per mL, in water.
    [Show full text]
  • Development of a Thin Layer Chromatography Method for the Separation of Enantiomers Using Chiral Mobile Phase Additives
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Development of a Thin Layer Chromatography Method for the Separation of Enantiomers Using Chiral Mobile Phase Additives Author(s): Robyn L. Larson, Kelly A. Howerter, Jacob L. Easter Document No.: 240685 Date Received: December 2012 Award Number: 2008-DN-BX-K140 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 8/30/12 Development of a Thin Layer Chromatography Method for the Separation of Enantiomers Using Chiral Mobile Phase Additives Grant # 2008-DN-BX-K140 Robyn L. Larson1, Kelly A. Howerter1 and Jacob L. Easter2 Virginia Department of Forensic Science1 700 North Fifth St. Richmond, VA 23219 Virginia Commonwealth University2 Richmond, VA This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Chloroform 1
    CHLOROFORM 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about chloroform and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and the sites are targeted for long-term federal cleanup. Chloroform has been found in at least 717 of the 1,430 current or former NPL sites, including 6 in Puerto Rico and 1 in the Virgin Islands. However, it’s unknown how many NPL sites have been evaluated for this substance. As more sites are evaluated, the sites with chloroform may increase. This is important because exposure to this substance may harm you and because these sites may be sources of exposure. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to chloroform, many factors determine whether you’ll be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider the other chemicals you’re exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 1.1 WHAT IS CHLOROFORM? Chloroform is also known as trichloromethane or methyltrichloride.
    [Show full text]
  • 01987 Data Sheet
    DATA SHEET Reagent: Efavirenz Catalog Number: 4624 Lot Number: 01987 Release A Category: Provided: 20 mg Chemical Name: (S)-6-chloro-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)- 2H-3,1-benzoxazin-2-one Empirical C14H9ClF3NO2 Formula: Molecular 315.68 Weight: CAS Num: 154598-52-4 Solubility: DMSO; Chloroform; slightly soluble in toluene; insoluble in water. Mechanical Efavirenz is a non-nucleoside reverse transcriptase inhibitor of HIV-1. Efavirenz activity is Action: mediated predominantly by noncompetitive inhibition of HIV-1 reverse transcriptase. HIV-2 reverse transcriptase and human cellular DNA polymerases are not inhibited by efavirenz. Special COA Characteristics: Recommended Room temperature. Once resuspended, working aliquots can be stored at −20°C. Storage: ALL RECIPIENTS OF THIS MATERIAL MUST COMPLY WITH ALL APPLICABLE BIOLOGICAL, CHEMICAL, AND/OR RADIOCHEMICAL SAFETY STANDARDS INCLUDING SPECIAL PRACTICES, EQUIPMENT, FACILITIES, AND REGULATIONS. NOT FOR USE IN HUMANS. REV: 07/25/2014 Page 1 of 2 Contributor: Division of AIDS, NIAID. NOTE: Acknowledgment for publications should read "The following reagent was obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: Efavirenz." This compound is restricted for “research purposes only” and is limited to 40 mg per requester per year. Not available for release to commercial organizations outside of the USA. Recipient agrees that the reagent (Efavirenz) use is permitted only as a standard for in vitro and/or studies in animals for inhibition of HIV replication. Last Updated July 25, 2014 ALL RECIPIENTS OF THIS MATERIAL MUST COMPLY WITH ALL APPLICABLE BIOLOGICAL, CHEMICAL, AND/OR RADIOCHEMICAL SAFETY STANDARDS INCLUDING SPECIAL PRACTICES, EQUIPMENT, FACILITIES, AND REGULATIONS.
    [Show full text]
  • ADOLESCENT SUBSTANCE USE 101 Current Trends and the Impact of COVID-19
    ADOLESCENT SUBSTANCE USE 101 Current Trends and the Impact of COVID-19 UCLA INTEGRATED SUBSTANCE ABUSE PROGRAMS HOW TO ASK A QUESTION To ask a question, please If you have a comment, please enter it into enter it in the Q&A box the chat box. When you enter a comment, you have two options, one to pose the you see on your zoom comment to everyone or just privately to toolbar. panelists, which is the default setting. POLL: YOUR ROLE AND/OR ORGANIZATION • Physician • Group practice comprised of at least one physician • Hospital outpatient department • Federally qualified health center • Rural health clinic • Community mental health clinic • Certified Community Behavioral Health Clinic • Opioid treatment program • Critical access hospital • Other (enter in chat) TODAY’S PRESENTER Thomas E. Freese, Ph.D. Co-Director of the UCLA Integrated Substance Abuse Programs Director of the Pacific Southwest Addictions Technology Transfer Center WEBINAR OBJECTIVES By the end of this webinar, participants will be able to: 1. Describe the psychoactive substances most commonly used by adolescents. 2. Discuss the main mechanisms of action for psychoactive substances. 3. Describe the main reasons adolescents use psychoactive substances. 5 WHAT SUBSTANCES ARE BEING USED BY THE TEENAGERS THAT YOU ARE SEEING? Please type your answer in the chat feature 6 NUMBERS OF PEOPLE REPORTING PAST MONTH SUBSTANCE USE AMONG THOSE AGED 12 OR OLDER: 2018 SOURCES: McCance-Katz, 2019; SAMHSA, 2019 7 SUBSTANCE USE TRENDS IN SCHOOL POPULATIONS Source: National Institute on Drug
    [Show full text]
  • Toxicology Reference Material
    toxicology Toxicology covers a wide range of disciplines, including therapeutic drug monitoring, clinical toxicology, forensic toxicology (drug driving, criminal and coroners), drugs in sport and work place drug testing, as well as academia and research. Those working in the field have a professional interest in the detection and measurement of alcohol, drugs, poisons and their breakdown products in biological samples, together with the interpretation of these measurements. Abuse and misuse of drugs is one of the biggest problems facing our society today. Acute poisoning remains one of the commonest medical emergencies, accounting for 10-20% of hospital admissions for general medicine [Dargan & Jones, 2001]. Many offenders charged with violent crimes, or victims of violent crime may have been under the influence of drugs at the time the act was committed. The use of mind-altering drugs in the work place, or whilst in control of a motor vehicle places others in danger [Drummer, 2001]. Performance enhancing drugs in sport make for an uneven playing field and distract from the core ethic of sportsmanship. Patterns of drug abuse around the world are constantly evolving. They vary between geographies; from one country to another and even from region to region or population to population within countries. With a European presence, a wide reaching network of global customers and distributors, and activate participation in relevant professional societies, Chiron is well positioned to develop and deliver relevant, and current standards to meet customer demand in this challenging field. Chiron AS Stiklestadvn. 1 N-7041 Trondheim Norway Phone No.: +47 73 87 44 90 Fax No.: +47 73 87 44 99 E-mail: [email protected] Website: www.chiron.no Org.
    [Show full text]
  • Fundamentals of Modern UV-Visible Spectroscopy
    Fundamentals of modern UV-visible spectroscopy Primer Tony Owen Copyright Agilent Technologies 2000 All rights reserved. Reproduction, adaption, or translation without prior written permission is prohibited, except as allowed under the copyright laws. The information contained in this publication is subject to change without notice. Printed in Germany 06/00 Publication number 5980-1397E Preface Preface In 1988 we published a primer entitled “The Diode-Array Advantage in UV/Visible Spectroscopy”. At the time, although diode-array spectrophotometers had been on the market since 1979, their characteristics and their advantages compared with conventional scanning spectrophotometers were not well-understood. We sought to rectify the situation. The primer was very well-received, and many thousands of copies have been distributed. Much has changed in the years since the first primer, and we felt this was an appropriate time to produce a new primer. Computers are used increasingly to evaluate data; Good Laboratory Practice has grown in importance; and a new generation of diode-array spectrophotometers is characterized by much improved performance. With this primer, our objective is to review all aspects of UV-visible spectroscopy that play a role in obtaining the best results. Microprocessor and/or computer control has taken much of the drudgery out of data processing and has improved productivity. As instrument manufacturers, we would like to believe that analytical instruments are now easier to operate. Despite these advances, a good knowledge of the basics of UV-visible spectroscopy, of the instrumental limitations, and of the pitfalls of sample handling and sample chemistry remains essential for good results.
    [Show full text]
  • Chloroform Safety Data Sheet According to Federal Register / Vol
    Chloroform Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 06/03/2013 Revision date: 03/21/2017 Supersedes: 03/21/2017 Version: 1.3 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Chloroform CAS-No. : 67-66-3 Product code : LC13040 Formula : CHCl3 Synonyms : 1,1,1-trichloromethane / Chloroform / formyl trichloride / freon 20 / methane trichloride / methane, trichloro- / methenyl chloride / methenyl trichloride / methyl trichloride / R 20 / R 20 refrigerant / TCM (=trichloromethane) / trichloroform / trichloromethane 1.2. Recommended use and restrictions on use Use of the substance/mixture : Bactericide Fumigant Insecticide Solvent Chemical substance for research Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem, Inc. Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or +1-703-741-5970 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Acute toxicity (oral) H302 Harmful if swallowed Category 4 Acute toxicity (inhalation) H331 Toxic if inhaled Category 3 Skin corrosion/irritation H315 Causes skin irritation Category 2 Serious eye damage/eye H319 Causes serious eye irritation irritation Category 2A Carcinogenicity Category 2 H351 Suspected of causing cancer Reproductive toxicity H361 Suspected of damaging the unborn child. Category 2 Specific target organ H372 Causes damage to organs (liver, kidneys) through prolonged or repeated exposure toxicity (repeated exposure) (Inhalation, oral) Category 1 Full text of H statements : see section 16 2.2.
    [Show full text]