BANDED IRON FORMATION, PHANEROZOIC IRONSTONES and BOG IRON ORES Module Id GEL-05-148

Total Page:16

File Type:pdf, Size:1020Kb

BANDED IRON FORMATION, PHANEROZOIC IRONSTONES and BOG IRON ORES Module Id GEL-05-148 DEPOSITS RELATED TO CHEMICAL SEDIMENTATION. PART 1: BANDED IRON FORMATION, PHANEROZOIC IRONSTONES AND BOG IRON ORES 1. Details of Module Subject Name Geology Paper Name ECONOMIC GEOLOGY & MINERAL RESOURCES OF INDIA Module Name/Title DEPOSITS RELATED TO CHEMICAL SEDIMENTATION. PART 1: BANDED IRON FORMATION, PHANEROZOIC IRONSTONES AND BOG IRON ORES Module Id GEL-05-148 Pre-requisites Before learning this module, the users should be aware of: Sedimentary environment Geology of Iron formations Palaeoclimatic aspects Objectives To understand: Iron ore formation worldwide. Facies and genetic types of iron ore deposits. Deposition of iron formation. Keywords Iron ores, facies of iron ores, genesis of iron ores,type of iron ores. 2. Structure of the Module-as Outline: Table of Contents only (topics covered with their sub-topics) 1. Introduction 2. Banded Iron Formation 2.1 Oxide facies 2.2 Carbonate facies 2.3 Silicate facies 2.4 Sulfide facies 2.5 Types of Iron formations: Algoma type, Superior type; Rapian type 2.6 Genetic aspects 2.7 Some examples 3. Phanerozoic ironstones 3.1 Clinton type 3.2 Minette type 4. Bog iron ores 3.0 Development Team: Role Name Affiliation National Co-ordinator Subject Co-ordinators Prof. M.S. Sethumadhav Centre for Advanced Studies (e-mail: Prof. D. Nagaraju Dept of Earth Science [email protected]) Prof. B. Suresh University of Mysore, Mysore-6 Paper Co-ordinator Prof. M.S. Sethumadhav Centre for Advanced Studies Dept of Earth Science University of Mysore, Mysore-6 Content Writer/Author(CW) Prof. M.S. Sethumadhav Centre for Advanced Studies Dept of Earth Science University of Mysore, Mysore-6 Content Reviewer (CR) Prof. A. Balasubramaian Centre for Advanced Studies Dept of Earth Science University of Mysore, Mysore-6 1. INTRODUCTION About 95% of the world’s “reserve base” of iron ores, estimated at tons, occur in sedimentary ores [chemical sedimentary (74%) and volcano-sedimentary (19.4%)]. A meagre ~5% belongs to all other categories combined, including magmatic, epigenetic- hydrothermal, metamorphogenic and residual concentration types and iron stones and bog iron ores (Veizer et al., 1989). Five super large Precambrian iron ore districts, viz., the Hamersley Basin (Australia), the Transvaal-Griquatown region (S. Africa), the Minas Gerias (Brazil), the Labrador Trough region (Canada), and the Krivoy-Rog-Kursk Magnetic Anomaly region (Ukraine) together make up ~90% of the world’s total sedimentary iron ore resources. Other important occurrences are the Damara Belt (Namibia), the Yilgran Block (Australia), the Northern Basin (W. Australia), the Iron Ore Group and Dharwar Supergroup (India), the Lake Superior Province (USA), the Belozyorsky-Komsky region (Ukraine), the Michipicoten (Canada), the Intaka Complex (Venezuela) and the Liberia-Sierra Leone- Guinea- Ivory Coast Belt. In India the “reserve base” stands at tons and it ranks sixth in the world’s iron ore resources. Virtually all Indian ore production (57 million tons in 1991) came from Precambrian deposits in Goa, Karnataka, Madhya Pradesh, Bihar and Orissa states. Iron ores can be grouped into (a) Banded Iron Formation (BIF), (b) non-cherty ironstones and (c) Bog iron ores. The BIF are known in different continents under terms Banded hematite quartzite, Banded magnetite quartzite, itabirite, jaspilite, taconite etc. BIF is classified into three types: Algoma type, Lake Superior type and Rapitan type Non-cherty iron stones are classified into two types: Clinton type and Minette type. The BIF ores are dominantly Precambrian. In fact, the great bulk of the banded iron formations of the world was laid down in a very short time interval of 2500 – 1900 Ma ago (James and Trendall 1982). The amount of iron laid down during this period, and still preserved, is enormous- at least tons and possibly tons. Among the BIF subgroups the submarine volcanic-associated “Algoma type” BIF deposits were dominantly Archaean, though younger Algoma type iron ores are also known. The carbonate-orthoquartzite associated shelf/marginal basin deposits of the Lake Superior type BIF were almost exclusively of lower Proterozoic age. Rapitan type continental margin BIF deposits in glaciogenic sequences are essentially of upper Proterozoic age. The non-cherty ironstones of both Clinton and Minette types are exclusively Phanerozoic. The bog iron ores were formed on land from carboniferous to Recent times. 2. BANDED IRON FORMATION (BIF) BIF is characterized by its fine layering. The layers are generally 0.5-3 cm thick and inturn they are commonly laminated on a scale of millimetres or fractions of a millimetre. The layering consists of silica layers (in the form of chert or better crystallized silica) alternating with layers of iron minerals. The simplest and commonest BIF consists of alternate hematite and chert layers. James (1954) identified four important facies of BIF. 2.1 Oxide facies: This is the most important facies and it can be divided into the hematite and magnetite subfacies according to the dominant iron oxide. There is a complete gradation between the two subfacies. Hematite in least altered BIF takes the form of fine-grained grey or bluish specularite. Oolitic texture is common in some examples, suggesting a shallow water origin, but in others the hematite may have the form of structureless granules. Carbonates (calcite, dolomite and ankerite rather than siderite) may be present. The “chert” varies from fine-grained cryptocrystalline material to mosaics of intergrown quartz grains. In the much less common magnetite subfacies, layers of magnetite alternate with iron silicate or carbonate and cherty layers. Oxide facies BIF typically averages 30 – 35% Fe and these rocks are commercially viable provided they are amenable to beneficiation by magnetic or gravity separation of the iron minerals. 2.2 Carbonate facies: This commonly consist of interbanded chert and siderite in roughly equal proportions. It may grade through magnetite-siderite-quartz rock into the oxide facies, or, by the addition of pyrite, may grade into the sulphide facies. The siderite lacks oolitic or granular texture and appears to have accumulated as a fine mud below the level of wave action. 2.3 Silicate facies: Iron silicate minerals are generally associated with magnetite, siderite and chert which form layers alternating with each other. This mineralogy suggests that the silicate facies formed in an environment common to parts of the oxide and carbonates facies. However, of all the facies of BIF, the depositional environment for silicates is least understood. This is principally because of the number and complexity of the minerals and the fact that primary iron silicates are difficult to distinguish from low ranking metamorphic iron silicates. Probable primary iron silicates include greenalite, chamosite and glauconite, some minnesotaite and probably stilpnomelane. Most of the iron in these minerals is in the ferrous rather than the ferric state, which, like the presence of siderite, suggests a reducing environment. PCO2 may be important, a high value leading to siderite deposition, a lower one leading to iron silicate formation (Gross 1970). Carbonate and silicate facies BIF typically contain 25 – 30% Fe, which is too low to be of economic interest. They also present beneficiation problems. 2.4 Sulfide facies: This consists of pyritic carbonaceous argillites and occur as thinly banded rocks with organic matter plus carbon making up to 7 – 8 %. The main sulfide is pyrite which can be so fine-grained that its presence may be overlooked in hand specimens unless the rock is polished. The normal pyrite content is around 37 %, and the banding results from the concentration of pyrite into certain layers. This facies clearly formed under anaerobic conditions. Its high sulfur content precludes its exploitation as an iron ore; however, its has been mined until recently for its sulfur content at Chvaletice in Czechoslovakia. 2.4 Types of Banded iron formations Two distinct types, viz., The Algoma and the Superior type BIF, came to be recognised (Gross 1970) and the identity of the third (the Rapitan type) group as a distinct variety was also established (Trendall 1973; Dorr 1973). 2.4.1 Algoma type: This type is encountered in Archaean high-grade terrains and widespread development of it is in Archaean greenstone belts. It also occurs in younger rocks including the Phanerozoic. It shows a greywacke-volcanic association suggesting a geosynclinal environment and the oxide, carbonate and sulfide facies are present, with iron silicates often appearing in the carbonate facies. Algoma-type BIF generally ranges from a few centimetres to a hundred or so meters in thickness and is rarely more than a few kilometres in strike length. Exceptions to this observation occur in Western Australia where Late Archaean deposits of economic importance extending to several kms are found. In the Algoma type BIF, oolitic and granular textures are absent or inconspicuous and the typical texture is a streaky lamination. A close relationship in time and space to volcanic rocks hints at a volcanic source of the iron and many investigators regard the deposits of this type as being exhalative in origin, e.g., Fralick et al. (1989). Goodwin (1973) in a study of the Algoma type BIF in the Canadian Shield showed that facies analysis was a powerful tool in elucidating the palaeogeography and could be used to outline a large number of Archaean basins. His section across the Michipicolin Basin is shown if Fig. 1. The Algoma
Recommended publications
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • 40 Common Minerals and Their Uses
    40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to crust. Aluminum originates as an oxide called make light, very strong alloys used in the alumina. Bauxite ore is the main source aircraft industry. Beryllium salts are used of aluminum and must be imported from in fluorescent lamps, in X-ray tubes and as Jamaica, Guinea, Brazil, Guyana, etc. Used a deoxidizer in bronze metallurgy. Beryl is in transportation (automobiles), packaging, the gem stones emerald and aquamarine. It building/construction, electrical, machinery is used in computers, telecommunication and other uses. The U.S. was 100 percent products, aerospace and defense import reliant for its aluminum in 2012. applications, appliances and automotive and consumer electronics. Also used in medical Antimony equipment. The U.S. was 10 percent import A native element; antimony metal is reliant in 2012. extracted from stibnite ore and other minerals. Used as a hardening alloy for Chromite lead, especially storage batteries and cable The U.S. consumes about 6 percent of world sheaths; also used in bearing metal, type chromite ore production in various forms metal, solder, collapsible tubes and foil, sheet of imported materials, such as chromite ore, and pipes and semiconductor technology. chromite chemicals, chromium ferroalloys, Antimony is used as a flame retardant, in chromium metal and stainless steel. Used fireworks, and in antimony salts are used in as an alloy and in stainless and heat resisting the rubber, chemical and textile industries, steel products. Used in chemical and as well as medicine and glassmaking.
    [Show full text]
  • Eparation of the Purest Aluminum Chemicals
    III. MINERAL COMMODITIES A. INDIVIDUAL MINERAL COMMODITY REVIEWS ALUMINA & ALUMINUM A. Commodity Summary Aluminum, the third most abundant element in the earth's crust, is usually combined with silicon and oxygen in rock. Rock that contains high concentrations of aluminum hydroxide minerals is called bauxite. Although bauxite, with rare exceptions, is the starting material for the production of aluminum, the industry generally refers to metallurgical grade alumina extracted from bauxite by the Bayer Process, as the ore. Aluminum is obtained by electrolysis of this purified ore.1 The United States is entirely dependent on foreign sources for metallurgical grade bauxite. Bauxite imports are shipped to domestic alumina plants, which produce smelter grade alumina for the primary metal industry. These alumina refineries are in Louisiana, Texas, and the U.S. Virgin Islands.2 The United States must also import alumina to supplement this domestic production. Approximately 95 percent of the total bauxite consumed in the United States during 1994 was for the production of alumina. Primary aluminum smelters received 88 percent of the alumina supply. Fifteen companies operate 23 primary aluminum reduction plants. In 1994, Montana, Oregon, and Washington accounted for 35 percent of the production; Kentucky, North Carolina, South Carolina, and Tennessee combined to account for 20 percent; other states accounted for the remaining 45 percent. The United States is the world’s leading producer and the leading consumer of primary aluminum metal. Domestic consumption in 1994 was as follows: packaging, 30 percent; transportation, 26 percent; building, 17 percent; electrical, 9 percent; consumer durables, 8 percent; and other miscellaneous uses, 10 percent.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Ofr034 85.Pdf
    GALLIUM AND GERMANIUM POTENTIAL IN ALASKA by: Steven A. Fechner **k*t******k**************-k****f******* 1\ 34-85 I I UNITED STATES DEPARTMENT OF THE INTERIOR Donald P. Hodel, Secretary I BUREAU OF MINES I Robert C. Horton, Director I CONTENTS Page Abstract............. ................... .... .............. ... .... 1 Introduction........ ..................................... 1 Acknowledgments............................................. 2 Bureau of Mines investigation.................................. 2 Results............. .................. .......................... 3 Gallium............ ................... ...... .... ............. 3 Germanium....................... .......................... 6 Potential ......... ........................................ ...... 7 Conclusions and recommendations................................. 7 References............... ............... ................... 9 ILLUSTRATIONS 1. Gallium and germanium location map of Alaska............(in pocket) TABLES 1. Recoverable gallium and germanium concentrations in ore deposits............................................. ........ 4 2. Analytical results from selected mineral specimens and concentrates................................................ 5 i UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT ppm Parts per million % Percent ii GALLIUM AND GERMANIUM POTENTIAL IN ALASKA By Steven A. Fechner 1/ ABSTRACT The U.S. Bureau of Mines is currently conducting a mineral study of the gallium and germanium potential in Alaska as part of the critical and strategic
    [Show full text]
  • GEOLOGIC SETTING and GENETIC INTERPRETATION of the BOQUIRA Pb-Zn DEPOSITS, BAHIA STATE, BRAZIL
    Revista Brasileira de Geociências 12(1-3):.414-425, Marv-get., 1982 - São Paulo GEOLOGIC SETTING AND GENETIC INTERPRETATION OF THE BOQUIRA Pb-Zn DEPOSITS, BAHIA STATE, BRAZIL ILSON O. CARVALHO·, HALF ZANTOp·· and JOAQUIM R.F. TORQUATO··· AB8TRACT The stratabound~straflform:Pb~Zn-AgMCd sulfide deposits of Boquira, located ln south-central Bahia State, occur in metamorphic rocks ofthe Archean Boquira Formation. This formation is composed ofaltered volcanic rocks, schists, quartzites, iron formation, and dolomitic marbles which are the metamorphiclequivalents of intermediate to acidic volcanic rocks, volcani­ clastic sediments, chert and iron-rlch chemical sediments. These rocks were intruded by granitic magmas in the late Proterozoic time. The massive to semimassive ore lenscs are conformably enclosed in the silicate facies of lhe Contendas-Boquira Member. The primary ore is composed of galena and sphalerite in a gangue of magnetite, maghemite, martite, and minor pyrite, pyrrhotite, chalcopyrite, quartz and amphi­ boles. Thelassociation of the iron formation with volcanic rocks suggests that it is of Algoman type, and the conformable relationships between the iron formation and thc sulfide lemes suggest that the 'sulfides are also volcanic exhalative. ln addition, isotcpic analyses of carbonate suggest a marine depositional environment ar the vicinities of subaqueous centers of discharge of hydro­ thermal brines. INTRODUCTION TheBoquiraPb-ZnDistrictissituated The contact between the B.F. and the basement is not sharp in lhe south-central area of Bahia State, about 450km west and it is inarked by transitional rock types, and diffused of the city of Salvador. Its area is about 170 km' localized metasomatic effects. The metasomatism appears caused between coordinates 12'OO'-13'15'S and 42'30'-43'W (Fig.
    [Show full text]
  • The Journal of the Geological Society of Jamaica Bauxite /Alumina Symposium 1971
    I THE JOURNAL OF THE GEOLOGICAL SOCIETY OF JAMAICA BAUXITE /ALUMINA SYMPOSIUM 1971 LIBRARY 01' ISSUE '/// <°* PREFACE The recent Bauxite/Alumina Industry Symposium, which was sponsored by the Geo­ logical Society of Jamaica, was an attempt to bring together scientists and engineers to discuss the many problems relating to the industry. Ihe use of a multi-dicipli- nary approach has the advantage of permitting different lines of attack on the same problems, and thereby increasing the likelihood of finding solutions to them. Also, the interaction of people from the University, industry and Government greatly facilitates communication and allows problems to be evaluated and examined from different points of view. The bauxite/alumina industry was selected for discussion because of its significance in the economy of Jamaica. It contributed about 16% of the country's total Gross Domestic Product in 1970, and is the economic sector with the greatest potential for growth. Jamaica's present viable mineral industry only dates back to 19S2 when Reynolds Jamaica Mines, Limited started the export of kiln dried metallurgical grade bauxite ore. This was followed shortly by the production and export of alumina by the then Alumina Jamaica Limited (now Alcan Jamaica, Limited), a subsidiary of the Aluminium Company of Canada. The commencement of this new and major industry followed a successful exploration and development programme which resulted largely from the keen perception and perseverance of two men. First, Mr. R.F. Innis observed that some of the cattle lands on the St. Ann plateau were potential sources of aluminium ore, and then Sir Alfred DaCosta persisted in attempts to interest aluminium companies in undertaking exploration work here.
    [Show full text]
  • Ironstone Occurrences in the Northern Part of the Bahariya Depression, Western Desert, Egypt: Geology, Mineralogy, Geochemistry and Origin
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS GEOLÓGICAS DEPARTAMENTO DE PETROLOGÍA Y GEOQUÍMICA TESIS DOCTORAL Ironstone occurrences in the northern part of the Bahariya Depression, Western Desert, Egypt: Geology, mineralogy, geochemistry and origin Depósitos de hierro al norte de la Depresión de Bahariya, Desierto Occidental, Egipto: Geología, mineralogía, geoquímica y génesis MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Adel Mady Afify Mohammed DIRECTORES María Esther Sanz-Montero José Pedro Calvo Sorando Madrid, 2017 © Adel Mady Afify Mohammed, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS GEOLÓGICAS DEPARTAMENTO DE PETROLOGÍA Y GEOQUÍMICA PhD Thesis Ironstone occurrences in the northern part of the Bahariya Depression, Western Desert, Egypt: Geology, mineralogy, geochemistry and origin Depósitos de hierro al norte de la Depresión de Bahariya, Desierto Occidental, Egipto: Geología, mineralogía, geoquímica y génesis Dissertation submitted for the degree of Doctor of Philosophy in Geological Sciences Adel Mady Afify Mohammed Supervisors: Dr. María Esther Sanz-Montero Dr. José Pedro Calvo Sorando Madrid, 2016 Acknowledgements The PhD thesis presented here is a result of an intense and long work, which has come to fruition thanks to several people who have supported me over the years. In the following paragraphs I want to thank in a special way to those without whom this thesis would not have been. Firstly, thanks to God destiny that grants me the opportunity to reach the end of this work and inspire me how to finish it. Secondly, I want to express my deep thanks and gratitude to my supervisors; Prof. Dr. Jose Pedro Calvo and Prof. Dr. Maria Esther Sanz-Montero, who taught me how to think freely and critically.
    [Show full text]
  • Fluid-Inclusion Petrology Data from Porphyry Copper Deposits and Applications to Exploration COVER PHOTOGRAPHS 1
    - . Fluid-Inclusion Petrology Data from PorpHyry Copper Deposits and Applications to Exploration COVER PHOTOGRAPHS 1. Asbestos ore 8. Aluminum ore, bauxite, Georgia I 2 3 4 2. Lead ore, Balmat mine, N.Y. 9. Native copper ore, Keweenawan 5 6 3. Chromite, chromium ore, Washington Peninsula, Mich. 4. Zinc ore, Friedensville, Pa. 10. Porphyry molybdenum ore, Colorado 7 8 5. Banded iron-formation, Palmer, 11. Zinc ore, Edwards, N.Y. Mich. 12. Manganese nodules, ocean floor 9 10 6. Ribbon asbestos ore, Quebec, Canada 13. Botryoidal fluorite ore, 7. Manganese ore, banded Poncha Springs, Colo. II 12 13 14 rhodochrosite 14. Tungsten ore, North Carolina Fluid-Inclusion Petrology­ Data from Porphyry Copper Deposits and Applications to Exploration By]. THOMAS NASH GEOLOGY AND RESOURCES OF COPPER DEPOSITS GEOLOGICAL SURVEY PROFESSIONAL PAPER 907-D A summary of new and published descriptions offluid inclusions from 3 6 porphyry copper deposits and discussion of possible applica'tions to exploration for copper deposits UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Nash, John Thomas, 1941- Fluid-inclusion petrology-data from porphyry copper deposits and applications to exploration. (Geology and Resources of Copper Deposits) (Geological Survey Professional Paper 907-D) Bibliography: p. Supt. of Docs. no.: I 19.16:907-D 1. Porphyry-Inclusions. 2. Porphyry-Southwestern States. 3. Copper ores-Southwestern States. I. Title. II. Series. III. Series: United States Geological Survey Professional Paper 907-D. QE462.P6N37 549'.23 76-608145 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • Gold in Porphyry Copper Deposits: Experimental Determination of The
    Geochemistry and Petrology of Some Proterozoic Banded Iron-Formations of the Quadrilátero Ferrífero, Minas Gerais, Brazil C. KLEIN† Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131 AND E. A. LADEIRA* Instituto de Geociências, and Museu de História Natural, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil Abstract This study presents detailed geochemical and petrologic data for 16 samples collected from four different iron- formations in the Early Proterozoic Minas Supergroup of the Quadrilátero Ferrífero. These banded iron-formation samples represent the best preserved, unweathered, and least altered iron-formation precursors to the major hematite-rich ore deposits of the region. Since the 17th century, the Quadrilátero Ferrífero has been recognized as a major gold- and iron-rich province, which has resulted in it being the best-studied Precambrian region in Brazil. The banded iron-formations, locally known as itabirites, and associated rocks, including dolomites, all are part of the Proterozoic Minas Supergroup with a minimum Pb/Pb age determined on the dolomites of 2.4 Ga. The samples were obtained from fresh outcrops in the field, from fresh exposures in open pit mines or from deep diamond drill cores in four localities: the Santuário da Serra da Piedade, and the open pit iron ore mines of Pico do Itabirito, Águas Claras, and Mutuca. All these have hematite as the only or principal iron oxide; maghemite was found in only one sample. This is in contrast to the common occurrence of magnetite as a major iron oxide in many Archean and Early Proterozoic iron-formations.
    [Show full text]
  • Hematite and Goethite Inclusions in Low-Grade
    HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIATION Beate Orberger, Christiane Wagner, Alina Tudryn, Benoît Baptiste, Richard Wirth, Rachael Morgan, Serge Miska To cite this version: Beate Orberger, Christiane Wagner, Alina Tudryn, Benoît Baptiste, Richard Wirth, et al.. HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIA- TION. XXVIII International Mineral Processing Congress Proceedings , Canadian Institute of Mining, Metallurgy and Petroleum, 2016, pp.1-11. hal-01394125 HAL Id: hal-01394125 https://hal.archives-ouvertes.fr/hal-01394125 Submitted on 8 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN: 978-1-926872-29-2 HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIATION *B. Orberger1, C. Wagner2, A. Tudryn1,
    [Show full text]
  • Investing in the Minerals Industry in Liberia
    ANDS, MIN L ES F O & Y GICAL SU E R LO RV N O E T E Y E S G I R G N I Y M R E IA P R UB E LIC OF LIB Investing in the minerals industry in Liberia liberia No4 cover.indd 1 21/01/2016 09:51:14 Investing in the minerals industry in Liberia: ▪▪ Extensive Archean and Proterozoic terranes highly prospective for many metals and industrial minerals, but detailed geology poorly known. ▪▪ Gold, iron ore and diamonds widespread, with new mines opened since 2013 and other projects in the pipeline. ▪▪ Known potentially economic targets for diamonds, base metals, manganese, bauxite, kyanite, phosphate, etc. ▪▪ Little modern exploration carried out for most mineral commodities with the exception of gold and iron ore. ▪▪ National datasets for geology, airborne geophysics and mineral occurrences available in digital form. ▪▪ Modern mineral licensing system. Introduction The Republic of Liberia is located in West Africa, in Liberia. Furthermore, Liberia is richly endowed bordered by Sierra Leone, Guinea, Côte d’Ivoire with natural resources, including minerals, water and to the south-west by the Atlantic Ocean and forests, and has a climate favourable to (Figure 1). With a land area of about 111 000 km2 agriculture. Since the cessation of hostilities the and a population of nearly 4.1 million much of country has made strenuous efforts to strengthen Liberia is sparsely populated comprising rolling its mineral and agricultural industries, mostly plateaux and low mountains away from a narrow timber and rubber. flat coastal plain. The climate is typically tropical, hot and humid at all times, with most rain falling Mineral resources, especially iron ore, have in the in the summer months.
    [Show full text]