Wainganga River -- Britannica Online Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Wainganga River -- Britannica Online Encyclopedia 10/12/2017 Wainganga River -- Britannica Online Encyclopedia Wainganga River Wainganga River, river, tributary of the Godavari River, western India. Its name, which means “Arrow of Water,” was probably derived from the names of the goddess Ganga and of Venu, or Benu, a king who ruled in Damoh during Puranic times. The Wainganga rises in the Mahadeo Hills in south-central Madhya Pradesh state and �ows 360 miles (580 km) south to join the Wardha River (a headwater of the Godavari), northeast of Kagaznagar in Maharashtra state. Along the �nal 142 miles (229 km) of its course, the river forms the boundary between Maharashtra and Telangana states and is known as the Pranhita. The river receives water from numerous tributaries, notably the Bagh, Bawanthadi, Kanhan, Chulband, Garhvi, and Thanwar rivers. The river drains into the eastern Nagpur plain and the areas around Seoni and Chhindwara. During the rainy season the river is navigable for only a short distance upstream from the con�uence with the Bagh River. Timber is �oated down the river, and grain and vegetables are carried short distances by boat. The Wainganga River valley is forested and relatively sparsely populated, except in the northern industrial area around Nagpur in Maharashtra state. Most of the population is concentrated along the river, where rice is extensively irrigated. Major river towns in Maharashtra include Kamptee, Bhandara, Tumsar, Balaghat, and Pauni. Source: "Wainganga River". Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2017. Web. 12 Oct. 2017 <https://www.britannica.com/place/Wainganga-River>. https://www.britannica.com/print/article/634154 1/1.
Recommended publications
  • Erai & Zarpat River Action Plan
    ERAI & ZARPAT RIVER ACTION PLAN INTRODUCTION: Erai River is a main tributary of Wardha River in Chandrapur District and Zarpat River is a tributary of Erai River. Total length of Erai River from origin to meeting point at Wardha River is 25 km approx. and length of Zarpat River from its origin to confluence point with Erai River is 15 km approx. Zarpat river flows between the dense populations of Chandrapur City that includes slum area. Zarpat River originated from the natural spring near Lohara village and meets into Erai River near Mana village. Erai River supplies water to Chandrapur city and M/s CSTPS, Chandrapur from Erai Dam and 30 % water supply of Chandrapur City is drawn from Erai River, Datala Road, intake belt. Chandrapur City lifts about 54 MLD water and M/s CSTPS lifts around 304 MLD water from Erai River. In peak summer, sometimes water level at Erai Dam reaches at dead level and water intake for industrial consumption has to restrict by District Authority to ensure water supply for drinking purpose. The water quality of Erai River and Zarpat River is deteriorated due to discharging of domestic sewage from rural and urban population in the vicinity of river basin. These two river become sewer carrying drains of Chandrapur city. ERAI RIVER Origin – Near Kasarbodi / khadsangi, Tal. Chimur, Dist. Chandrapur Total Length – Approx. 78 km (from origin to Erai Dam – 45 Km approx. & from Erai dam to confluence point to Wardha River at Village Hadasti - 33 km approx.) Depth – 3 meter to 8 meter ERAI & ZARPAT RIVER ACTION PLAN 1 Figure 1: Tree Diagram of Erai, Zarpat and Wardha River ERAI & ZARPAT RIVER ACTION PLAN 2 Figure 2: Map of Chandrapur city ERAI & ZARPAT RIVER ACTION PLAN 3 Figure 3: Erai River Dam (Water source of Chandrapur city and M/s CSTPS) The Erai River is having self-origination nearby Chimur and meets to Wardha River near Ballarpur.
    [Show full text]
  • From India: a Glimpse Through Advanced Morphometric Toolkits
    Morphological plasticity in a wild freshwater sh, Systomus sarana (Cyprinidae) from India: a glimpse through advanced morphometric toolkits Deepmala Gupta University of Lucknow Faculty of Science Arvind Kumar Dwivedi Barkatullah Vishwavidyalaya Faculty of Life Sciences Madhu Tripathi ( [email protected] ) University of Lucknow Faculty of Science https://orcid.org/0000-0003-1618-4994 Research article Keywords: Intraspecies diversity, Morphological variations, Systomus sarana, Landmark based analysis Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-35594/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/32 Abstract Background: Body morphology supposed to underpin wide differences in animal performance that can be used to understand the diversication of characters. Further, identifying the sh population with unique shape due to variations in their morphometric characters enable better management of these subunits. Advanced statistical toolkits of morphometry called truss network system and geometric morphometrics have been increasingly used for detecting variations in morphological traits between subunits of sh populations. The present study was therefore carried out with the objective of determining phenotypically distinct units of freshwater sh Systomus sarana collected from geographically isolated locations. Methods: In the present study, 154 specimens of olive barb, S. sarana were collected from four distantly located rivers covering the northern (Ganga), southern (Godavari), central (Narmada), and eastern (Mahanadi) regions of India. Truss-network system and geometric morphometrics have been utilized. Fourteen landmarks were digitized uniformly on each specimen. In the present study, the truss network system yielded size-corrected morphometric characters that were subjected to univariate and multivariate statistical assessment.
    [Show full text]
  • International Journal of Academic Research ISSN: 2348-7666; Vol.3, Issue-4(2), April, 2016 Impact Factor: 3.075; Email: [email protected]
    International Journal of Academic Research ISSN: 2348-7666; Vol.3, Issue-4(2), April, 2016 Impact Factor: 3.075; Email: [email protected] , Assistant Professor, Dept. of Civil Engineering, Sri. Indu College of Engineering and Technology, Seriguda , Ibrahim patnam (M) R.R District. Telangana State. , Lecturer in Dept. of Economics, Govt. (UG &PG) College, Anantapur, Andhra Pradesh , Post-Doctoral Fellow , Dept. of Economics , S.K. University , S.V. Puram , Anantapur , District, Andhra Pradesh. Floods are the most devastating natural calamities by their nature since time immemorial. Flooding is mainly caused by over spilling of river banks Severity increases where there is obstruction like encroachment in water ways in urban areas etc. The present paper analysed flood management. The main objectives are (i) To describe the river system, Rainfall, forecasting system and affected areas, (ii) To identify the causes vulnerability, impacts, losses, strategies, controlling measures of floods affected areas. The paper discuss the river basin wise flood situations rainfall , forecasting systems sites cause , losses, risk reduction measures strategies and flood management of the study area. flood management, calamities, forecasting, river basin catchment, vulnerability, strategies. Flood waters are simply going as a waste Floods are one of the most devastating in to seas and oceans. To control the natural calamities, by their nature and floods and utilize the waters for irrigation since time immemorial. It is most and other purposes, Interlinking of rivers commonly observed during monsoon can be a substantial solution. A variety of season and severe floods occurring every mitigation measures can be identified and year in one part or the throughout the implemented measures include flood country which has been causing forecasting and warning, adopting proper recurrent tremendous extensive damage land-use planning, flood-prone area to Agriculture, life and property besides zoning, and management.
    [Show full text]
  • Drainage Characteristics of Tectonically Active Areas in Wardha and Purna River Basin, Central India Using Satellite Data
    260 Journal of Geomatics Vol 11 No. 2 October 2017 Drainage characteristics of tectonically active areas in Wardha and Purna river basin, Central India using satellite data B. S. Manjare Department of Geology RTM Nagpur University, Nagpur (MS) India Email: [email protected] (Received: Mar 16, 2017; in final form: Sep 28, 2017) Abstract: The study area lies in the vicinity of north eastern part of the Salbardi fault which is one of the most important tectonic elements of the Son-Narmada-Tapti lineament trending in ENE-WSE direction. The drainage characteristics of the study area were investigated by using the IRS LISS III satellite data of 23.5 m spatial resolution and Shutlle Radar Topographic Mission (SRTM) Digital Elevation Models (DEMs). The course of Maru river is mostly controlled by the Salbardi fault and associated tectonic elements. The Maru river, which crosses the fault from north to south, exhibits two river terraces that rise and continue downstream, where the river flows on the downthrown block. The presence of dendritic to sub dendritic, rectangular and parallel drainage pattern in the study area shows the tectonic activity in the study area. Several parameters such as profile shape, gradient fluctuations and river grade and valley incision have been derived from longitudinal river profile. Keywords: Tectonics; Remote sensing; topographical profile; morphotectonic indices 1. Introduction information systems (GIS) and remotely sensed data could be more informative and results would be more Earth-observing satellites, airborne sensor systems, applicable to image interpretation (Ehler 1992; Horsby aerial and spatial data have almost the complete and Harris 1992; Saraf and Choudhury, 1998).
    [Show full text]
  • NW-109 Wainganga-Pranahita River Final
    Final Feasibility Report National Waterway-109 Region V – Wainganga-Pranahita River Kaleshwaram to Chandapur (165.78km) SURVEY PERIOD: 30 MAY 2016 TO 03 JUL 2016 Volume - I Prepared for: Inland Waterways Authority of India (Ministry of Shipping, Govt. of India) A-13, Sector – 1, NOIDA Distt. Gautam Budh Nagar, Uttar Pradesh – 201 301 Document Distribution Date Revision Distribution Hard Copy Soft Copy INLAND WATERWAYS 9 Dec 2016 Rev – 0 01 01 AUTHORITY OF INDIA INLAND WATERWAYS 21 Apr 2017 Rev – 1.0 01 01 AUTHORITY OF INDIA INLAND WATERWAYS 01 Dec 2017 Rev – 1.1 04 04 AUTHORITY OF INDIA INLAND WATERWAYS 26 Oct 2018 Rev – 1.2 04 04 AUTHORITY OF INDIA ACKNOWLEDGEMENT IIC Technologies Ltd. expresses its sincere gratitude to IWAI for awarding the work of carrying out detailed hydrographic surveys in the New National Waterways in NW-109 in Region V – from Kaleshwaram to Chandapur village. We would like to use this opportunity to pen down our profound gratitude and appreciations to Shri Pravir Pandey, IA&AS, Chairman IWAI for spending his valuable time and guidance for completing this Project. IIC Technologies Ltd., would also like to thank, Shri Alok Ranjan, ICAS, Member (Finance), Shri Shashi Bhushan Shukla, Member (Traffic), Shri S.K. Gangwar, Member (Technical) for their valuable support during the execution of project. IIC Technologies Ltd, wishes to express their gratitude to Capt. Ashish Arya, Hydrographic Chief IWAI, Cdr. P.K. Srivastava ex-Hydrographic Chief and Shri SVK Reddy, Chief Engineer-I for their guidance and inspiration for this project. IIC Technologies Ltd, would also like to thank Sh.
    [Show full text]
  • SRAVANA 9, JSU3 (SAKA} in Maharashtra and 262 Casualties Jrom Floods Upper Indravathi in Wardha River River in Orissa
    2£1 Stott, by Minister ‘SRAVANA 9, JSU3 (SAKA} in Maharashtra and 262 Casualties jrom floods upper indravathi in Wardha river river in Orissa hrs. reported to have collapsed by the im- pact of the floods and about 750 cattle STATEMENT BY MINISTER— heads are also reported to have been Contd. washed away. Casualties from the excessive floods There have been some reports in the in the Wardha river in Maharashtra press that the Tank at Nakthan on the and in the Upper Indravathi river in tributory of Wardha river has brea- Orissa ched. But, the Irrigation Department of Maharashtra has confirmed that the [English] Minor Dam at Nakthan is intact and has not added to the rush of waters THE MINISTER OF WATER RE- that affected the Mohad village. SOURCES (SHRI VIDYACHARAN SHUKLA): According to the reports received from Government of Maha- The District Collectors and other rashtra, there were excessive rains in Senior Officers of the Government of the catchment of the Wardha river Maharashtra have reached the affected falling in the districts of Betul and areas and have started immediate re- Chindwara in Madhya Pradesh and lief operations. Army has been called also heavy rains in Nagpur and War- in for rescuing the marooned popu- dha districts of Maharashtra. The lation of Mohad Town and they have rainfall in Betul was 400 mm in 24 commenced their work. hours upto the morning of 30th July, 1991. Rainfall in the Narkheda teh- sil of Nagpur district was 350 mm in According to the reports received the 24 hours.
    [Show full text]
  • Pre-Feasibility Report Proposed Ajansara Barrage Project for Lift
    PRE-FEASIBILITY REPORT PROPOSED AJANSARA BARRAGE PROJECT M/s. Vidharbha FOR LIFT IRRIGATION CAPACITY:TOTAL 30004 CCA Irrigation Development at Village Ajansara, Taluka Hinganghat, District Wardha, Maharashtra Corporation (VIDC) STUDY PERIOD PROPOSED AJANSARA BARRAGE PROJECT FOR LIFT IRRIGATION FOR TOTAL 30004 CCA AND 24000 ICA AT VILLAGE AJANSARA, TALUKA HINGANGHAT, DISTRICT WARDHA, MS INDEX BY M/S. VIDHARBHA IRRIGATION DEVELOPMENT CORPORATION (VIDC) INDEX Sr. No. Particular Page No. 1 Executive Summary 1 2 INTRODUCTION OF THE PROJECT/ BACKGROUND 6 INFORMATION 2.1 Identification of project 6 2.2 Brief History of nature of the project 7 2.3 Need for the project and its importance to the country and 7 region 2.4 Benefit of Project 9 3 PROJECT DESCRIPTION 10 3.1 Type of project including interlinked and interdependent 10 projects, if any 3.2 Regulatory Frame Work 10 3.3 Location (map showing general location, specific location, 11 and project boundary & project site layout) with coordinates 3.4 Details of alternate sites considered and the basis of 21 selecting the proposed site, particularly the environmental considerations gone into should be highlighted 3.5 Size or magnitude of operation 21 3.6 Project description with process details (a schematic 21 diagram/ flow chart showing the project layout, components of the project etc. 3.6.1 Design Feature of Head Work 21 3.6.2 Rolled Filled Earth Dam 22 3.6.3 Barrage 23 3.6.4 Design of Barrage 23 3.6.5 Foundation of Barrage 23 4 IRRIGATION PLANNING 24 4.1 Existing and Proposed Facilities in Command Area 24 4.2 Existing and Proposed Cropping Patterns 24 4.3 Soil Survey 24 4.4 Evaporation Losses 25 5 SURVEY AND INVESTIGATION 25 5.1 Topographical Survey & Investigation 25 5.2 Survey for Barrage 25 5.3 Submergence Survey 25 5.4 Canal and Command Area Survey 25 5.5 Survey for Construction Material 25 5.6 Geotechnical Investigation 26 6 PROJECT HYDROLOGY 26 6.1 General Climate and Hydrology 26 6.2 Hydrological Data 27 6.2.1 Catchment Area 27 SMS Envocare Ltd.
    [Show full text]
  • Morphometric Analysis of a Lower Wardha River Sub Basin of Maharashtra, India Using ASTER DEM Data and GIS B.S
    15th Esri India User Conference 2014 Morphometric Analysis of a Lower Wardha River sub basin of Maharashtra, India Using ASTER DEM Data and GIS B.S. Manjare, M.A. Padhye, S. S. Girhe Department of Geology RTM Nagpur University, Nagpur Abstract: About the Author: The study area is part of lower Wardha river of Wardha River basin, lies between 200 16’ 00’’ N to 200 35’ 00’’N latitude and 780 14’ 00’’ E to 780 38’ 00’’ E longitude with an area about 781.84 km2 and entire study area has been further divided into sub-watersheds,. It is covered in the Survey of India (SOI) toposheet numbers 55 L/2, L/3, L/6. L/7, L/11 & L/12 on 1:50,000 scale in Yeotmal and Wardha District Maharashtra area, India and forming a part of the hardrock terrain. The drainage network shows dendritic to sub- B.S. Manjare is working as an Assistant Professor in dendritic pattern and is non-perennial in nature. Poor soil Geology at Post Graduate Department of Geology RTM cover, sparse vegetation, erratic rainfall and lack of soil Nagpur University Nagpur since 2009. He has moisture characterize the area for most part of the year. completed his MSc Engineering and Environmental Recurring drought coupled with increase in groundwater geology from SGB Amravati University, Amravati. He exploitation results in decline the groundwater level. For has published a number of research papers in the detailed study we used Advanced Spaceborne Thermal journals of national and international repute. He is a life Emission and Reflection Radiometer (ASTER) data for member of various academic societies and his areas preparing Digital Elevation Model (DEM) and slope maps, specialization is Remote Sensing, GIS and Geographical information system (GIS) was used in Geomorphology evaluation of linear, areal and relief aspects of morphometric Email: [email protected] parameters.
    [Show full text]
  • Wardha District, Maharashtra
    1765/DBR/2013 भारत सरकार जल संसाधन मंत्रालय कᴂ द्रीय भूजल बो셍ड GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES CENTRAL GROUND WATER BOARD महाराष्ट्र रा煍य के अंत셍डत वधाड जजले की भूजल ववज्ञान जानकारी GROUND WATER INFORMATION WARDHA DISTRICT, MAHARASHTRA By 饍वारा Afaque Manzar आफ़ाक़ मंजर Scientist-B वैज्ञाननक- ख ´Ö¬µÖ •Öê¡Ö, •ÖÖ•Ö¯Öã¸ü CENTRAL REGION NAGPUR 2013 WARDHA DISTRICT AT A GLANCE 1. GENERAL INFORMATION Geographical Area : 6310 sq. km. Administrative Divisions : Taluka-8; Wardha, Deoli, Selu, Arvi, Ashti, Karanja, Hinganghat, Samudrapur. Villages : 1361 Population (2001 Census) : 12,30,640 Normal Annual Rainfall 985 mm to 1100 mm 2. GEOMORPHOLOGY Major Physiographic unit : Two; Northern Hills and Southern Plains Major Drainage : One; Wardha 3. LAND USE (2008-09) Forest Area : 590.13 sq. km. Net Area Sown : 187.00 sq. km. Cultivable Area : 2568.41 sq. km. 4. SOIL TYPE Black or Dark Brown soil viz., Kali, Morand, Khardi and Bardi. 5. PRINCIPAL CROPS (2008-09) Wheat 106.56 sq. km. Jowar 224.53 sq. km. Cotton 845.26 sq. km Total Pulses : 341.61 sq. km 6. IRRIGATION BY DIFFERENT SOURCES (2006-07 MI CENSUS) - Nos./Potential Created (ha) Dugwells : 47294/99920 Borewells : 70/176 Surface Flow Schemes : 607/1702 Surface Lift Schemes : 1184/3339 Net Potential Created : 105137 ha 7. GROUND WATER MONITORING WELLS (As on Nov 2012) Dugwells : 38 Piezometers : 17 8. GEOLOGY Recent : Alluvium Upper Cretaceous-Lower Eocene: Basalt (Deccan Trap) Middle Cretaceous : Infra-trappean beds 9.
    [Show full text]
  • DISTRICT SURVEY REPORT for SAND MINING INCLUDING OTHER MINOR MINERAL CHANDRAPUR DISTRICT, MAHARASHTRA
    DISTRICT SURVEY REPORT For SAND MINING INCLUDING OTHER MINOR MINERAL CHANDRAPUR DISTRICT, MAHARASHTRA As per Notification No. S.O. 3611 (E) New Delhi, the 25th July, 2018 of Ministry of Environment Forest and Climate change, Government of India Prepared by: District Mining Officer Collector Office, Chandrapur 2019 - 2020 .. ;:- CERTIFICATE The District Survey Report preparation has been undertaken in compliance as per Notification No. S.O. 3611 (E) New Delhi, the 25th July, 2018 of Ministry of Environment Forests and Climate Change, Government of India. Every effort have been made to cover sand mining location, area and overview of mining activity in the district with all its relevant features pertaining to geology and mineral wealth in replenishable and non-replenishable areas of rivers, stream and other sand sources. This report will be a model and guiding document which is a compendium of available mineral resources, geographical set up, environmental and ecological set up of the district and is based on data of various departments, published reports, and websites. The District Survey Report will form the basis for application for environmental clearance, preparation of reports and appraisal of projects. Prepared by: Approved by: ~ District Collector, Chandrapur PREFACE The Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India, made Environmental Clearance (EC) for mining of minerals mandatory through its Notification of 27th January, 1994 under the provisions of Environment Protection Act, 1986. Keeping in view the experience gained in environmental clearance process over a period of one decade, the MoEF&CC came out with Environmental Impact Notification, SO 1533 (E), dated 14th September 2006.
    [Show full text]
  • Aravalli Ranges • They Are Aligned in North-East to South-West Direction for About 800 Km Between Delhi and Palanpur in Gujarat
    UPSC CIVIL SERVICES EXAMINATION PRELIMS SPECIAL PREVIOUS YEAR QUESTIONS 1995 - 2018 Physical Features in India www.civilstap.com CHAPTER LISTING Unit Chapter Geomorphology L1 – L3 Climatology L4-L7 Physical Geography Oceanography L8 World Geography Biogeography L9 Social Geography L10 Economic Geography Basics of India L11 Physical features L12-L13 River systems Physical Geography Climate Indian Geography Agriculture Vegetation and Fauna Social Geography Economic Geography www.civilstap.com CHAPTER LISTING Chapter Topics The Himalayas The North Indian Plains Basics of India Peninsular Plateau Q 127-137 Coastal Plains and Islands Indian Desert www.civilstap.com QUESTION 127 Q. The approximate age of the Aravallis range is : [2001] (a) 370 million years (b) 470 million years (c) 570 million years (d) 670 million years www.civilstap.com QUESTION 127 Aravalli Ranges • They are aligned in north-east to south-west direction for about 800 km between Delhi and Palanpur in Gujarat. • They are one of the oldest fold mountains of the world and the oldest in India. • After its formation in Archaean Era (several million years ago), its summits were nourishing glaciers and several summits were probably higher than the present day Himalayas. • Now they are relict (remnants after severe weathering and erosion since millions of years) of the world’s oldest mountain formed as a result of folding (Archaean Era). • The range is conspicuous in Rajasthan (continuous range south of Ajmer where it rises to 900 m.) but becomes less distinct in Haryana and Delhi. • It’s general elevation is only 400-600 m, with few hills well above 1,000 m.
    [Show full text]
  • Integrated Development and Management Plan for Water Resources Wainganga Sub- Basin (Godavari), Maharashtra
    Annual Report on IWP sponsored Project Integrated Development and Management Plan for Water Resources Wainganga Sub- Basin (Godavari), Maharashtra For the, Water Resources Department, Government of Maharashtra Prepared and Submitted by, Gomukh Environmental Trust for Sustainable Development, Pune 24th December, 2012 1 Acknowledgements: The Gomukh Environmental Trust for Sustainable Development commenced with the task of preparing an ‘Integrated Water Resource Development Plan for the Wainganga Sub- basin’. We wish to thank the Water Resources Department of Government of Maharashtra for giving us the opportunity for taking on this immense task. We would also like to express our sincere gratitude to India Water Partnership (IWP), New Delhi for providing us with the financial assistance in the initial months. This helped us to conduct our stakeholder meetings and workshops on the field. The IWP has also provided us with funds for printing the book the first part of the book on “Wainganga: Planning for Water Resource Development”. The Trust is especially indebted to Dr. D.M. More for his guidance and unstinting support. We are also thankful to our field-coordinator Mr. Manish Rajankar whose research work and field experiences proved extremely valuable in data collection and procurement of documents from various government agencies and departments. Finally, we wish to acknowledge all the elderly villages residing on the banks of Wainganga and in settlements and villages in forests who gave us intricate details and important insights about the dynamic interactions of streams, river and forests. Table of content: Acknowledgements: ............................................................................................................... 2 1. The Wainganga Shodh Yatra .............................................................................................. 5 2. West Zone Water Partnership Workshops and International Water Forums: ..................
    [Show full text]