Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma Based Protein Signatures Associated with Small Cell Lung Cancer
cancers Article Plasma Based Protein Signatures Associated with Small Cell Lung Cancer Johannes F. Fahrmann 1,†, Hiroyuki Katayama 1,† , Ehsan Irajizad 1,†, Ashish Chakraborty 1 , Taketo Kato 1 , Xiangying Mao 1 , Soyoung Park 1, Eunice Murage 1, Leona Rusling 1, Chuan-Yih Yu 1, Yinging Cai 1, Fu Chung Hsiao 1, Jennifer B. Dennison 1, Hai Tran 2, Edwin Ostrin 3 , David O. Wilson 4, Jian-Min Yuan 5,6, Jody Vykoukal 1 and Samir Hanash 1,* 1 Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; [email protected] (J.F.F.); [email protected] (H.K.); [email protected] (E.I.); [email protected] (A.C.); [email protected] (T.K.); [email protected] (X.M.); [email protected] (S.P.); [email protected] (E.M.); [email protected] (L.R.); [email protected] (C.-Y.Y.); [email protected] (Y.C.); [email protected] (F.C.H.); [email protected] (J.B.D.); [email protected] (J.V.) 2 Department of Thoracic-Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; [email protected] 3 Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; [email protected] 4 Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; [email protected] 5 Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; [email protected] 6 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA Citation: Fahrmann, J.F.; Katayama, * Correspondence: [email protected] † These authors contributed equally to this work. -
Multiple Activities of Arl1 Gtpase in the Trans-Golgi Network Chia-Jung Yu1,2 and Fang-Jen S
© 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1691-1699 doi:10.1242/jcs.201319 COMMENTARY Multiple activities of Arl1 GTPase in the trans-Golgi network Chia-Jung Yu1,2 and Fang-Jen S. Lee3,4,* ABSTRACT typical features of an Arf-family GTPase, including an amphipathic ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like N-terminal helix and a consensus site for N-myristoylation (Lu et al., proteins (Arls) are highly conserved small GTPases that function 2001; Price et al., 2005). In yeast, recruitment of Arl1 to the Golgi as main regulators of vesicular trafficking and cytoskeletal complex requires a second Arf-like GTPase, Arl3 (Behnia et al., reorganization. Arl1, the first identified member of the large Arl family, 2004; Setty et al., 2003). Yeast Arl3 lacks a myristoylation site and is an important regulator of Golgi complex structure and function in is, instead, N-terminally acetylated; this modification is required for organisms ranging from yeast to mammals. Together with its effectors, its recruitment to the Golgi complex by Sys1. In mammalian cells, Arl1 has been shown to be involved in several cellular processes, ADP-ribosylation-factor-related protein 1 (Arfrp1), a mammalian including endosomal trans-Golgi network and secretory trafficking, lipid ortholog of yeast Arl3, plays a pivotal role in the recruitment of Arl1 droplet and salivary granule formation, innate immunity and neuronal to the trans-Golgi network (TGN) (Behnia et al., 2004; Panic et al., development, stress tolerance, as well as the response of the unfolded 2003b; Setty et al., 2003; Zahn et al., 2006). -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R. -
AFF3 Upregulation Mediates Tamoxifen Resistance in Breast
Shi et al. Journal of Experimental & Clinical Cancer Research (2018) 37:254 https://doi.org/10.1186/s13046-018-0928-7 RESEARCH Open Access AFF3 upregulation mediates tamoxifen resistance in breast cancers Yawei Shi1†, Yang Zhao2†, Yunjian Zhang1, NiJiati AiErken3, Nan Shao1, Runyi Ye1, Ying Lin1* and Shenming Wang1* Abstract Background: Although tamoxifen is a highly effective drug for treating estrogen receptor–positive (ER+) breast cancer, nearly all patients with metastasis with initially responsive tumors eventually relapse, and die from acquired drug resistance. Unfortunately, few molecular mediators of tamoxifen resistance have been described. Here, we describe AFF3 (AF4/FMR2 family member 3), which encodes a nuclear protein with transactivation potential that confers tamoxifen resistance and enables estrogen-independent growth. Methods: We investigated AFF3 expression in breast cancer cells and in clinical breast cancer specimens with western blot and Real-time PCR. We also examined the effects of AFF3 knockdown and overexpression on breast cancer cells using luciferase, tetrazolium, colony formation, and anchorage-independent growth assays in vitro and with nude mouse xenografting in vivo. Results: AFF3 was overexpressed in tamoxifen-resistant tumors. AFF3 overexpression in breast cancer cells resulted in tamoxifen resistance, whereas RNA interference–mediated gene knockdown reversed this phenotype. Furthermore, AFF3 upregulation led to estrogen-independent growth in the xenograft assays. Mechanistic investigations revealed that AFF3 overexpression activated the ER signaling pathway and transcriptionally upregulated a subset of ER-regulated genes. Clinical analysis showed that increased AFF3 expression in ER+ breast tumors was associated with worse overall survival. Conclusions: These studies establish AFF3 as a key mediator of estrogen-independent growth and tamoxifen resistance and as a potential novel diagnostic and therapeutic target. -
Protein Domain-Level Landscape of Cancer-Type-Specific Somatic We Explored the Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations
RESEARCH ARTICLE Protein Domain-Level Landscape of Cancer- Type-Specific Somatic Mutations Fan Yang1,2,3, Evangelia Petsalaki2,3, Thomas Rolland4,5, David E. Hill4, Marc Vidal4, Frederick P. Roth1,2,3,4,6,7* 1 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, 2 Donnelly Centre, University of Toronto, Toronto, Ontario, Canada, 3 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada, 4 Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 5 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 6 Canadian Institute for Advanced Research, Toronto, Ontario, Canada, 7 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada * [email protected] Abstract OPEN ACCESS Identifying driver mutations and their functional consequences is critical to our understand- Citation: Yang F, Petsalaki E, Rolland T, Hill DE, ing of cancer. Towards this goal, and because domains are the functional units of a protein, Vidal M, Roth FP (2015) Protein Domain-Level Landscape of Cancer-Type-Specific Somatic we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Mutations. PLoS Comput Biol 11(3): e1004147. Specifically, we systematically examined tumor genomes from 21 cancer types to identify doi:10.1371/journal.pcbi.1004147 domains with high mutational density in specific tissues, the positions of mutational hotspots Editor: Mona Singh, Princeton University, United within these domains, and the functional and structural context where possible. While hot- States of America spots corresponding to specific gain-of-function mutations are expected for oncoproteins, Received: August 22, 2014 we found that tumor suppressor proteins also exhibit strong biases toward being mutated in Accepted: January 22, 2015 particular domains. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations
Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations Ays¸e Demirkan1., Cornelia M. van Duijn1,2,3., Peter Ugocsai4., Aaron Isaacs1,2.*, Peter P. Pramstaller5,6,7., Gerhard Liebisch4., James F. Wilson8.,A˚ sa Johansson9., Igor Rudan8,10,11., Yurii S. Aulchenko1, Anatoly V. Kirichenko12, A. Cecile J. W. Janssens13, Ritsert C. Jansen14, Carsten Gnewuch4, Francisco S. Domingues5, Cristian Pattaro5, Sarah H. Wild8, Inger Jonasson9,11, Ozren Polasek11, Irina V. Zorkoltseva12, Albert Hofman3,13, Lennart C. Karssen1, Maksim Struchalin1, James Floyd15, Wilmar Igl9, Zrinka Biloglav16, Linda Broer1, Arne Pfeufer5, Irene Pichler5, Susan Campbell8, Ghazal Zaboli9, Ivana Kolcic11, Fernando Rivadeneira3,13,17, Jennifer Huffman18, Nicholas D. Hastie18, Andre Uitterlinden3,13,17, Lude Franke19, Christopher S. Franklin15, Veronique Vitart8,18, DIAGRAM Consortium{, Christopher P. Nelson20, Michael Preuss21, CARDIoGRAM Consortium{, Joshua C. Bis22, Christopher J. O’Donnell23,24, Nora Franceschini25, CHARGE Consortium, Jacqueline C. M. Witteman3,13, Tatiana Axenovich12, Ben A. Oostra2,13,26", Thomas Meitinger27,28,29", Andrew A. Hicks5", Caroline Hayward18", Alan F. Wright18", Ulf Gyllensten9", Harry Campbell8", Gerd Schmitz4", on behalf of the EUROSPAN consortium 1 Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands, 2 Centre for Medical Sytems Biology, Leiden, The Netherlands, 3 Netherlands Consortium -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
Mir-145 Inhibits Breast Cancer Cell Growth Through RTKN
1461-1466 24/3/2009 01:35 ÌÌ ™ÂÏ›‰·1461 INTERNATIONAL JOURNAL OF ONCOLOGY 34: 1461-1466, 2009 miR-145 inhibits breast cancer cell growth through RTKN SHIHUA WANG, CHUNJING BIAN, ZHUO YANG, YE BO, JING LI, LIFEN ZENG, HONG ZHOU and ROBERT CHUNHUA ZHAO Center of Tissue Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P.R. China Received November 25, 2008; Accepted February 3, 2009 DOI: 10.3892/ijo_00000275 Abstract. MicroRNAs (miRNAs) represent a class of small miR-15a and miR-16 are down-regulated by hemizygous or non-coding RNAs regulating gene expression by inducing homozygous deletion or other unknown mechanisms in RNA degradation or interfering with translation. Aberrant 68% of CLLs (7) and miR-17-92 cluster is markedly over- miRNA expression has been described for several human expressed in B-cell lymphomas (8). Also in a large-scale malignancies. Herein, we show that miR-145 is down-regulated analysis of 540 tumor samples from lung, breast, stomach, in human cancer cell line MCF-7 when compared to normal prostate, colon, and pancreatic tumors, a so-called solid human mammary epithelial cell line MCF10A. Overexpression cancer microRNA signature was identified (9). However, of miR-145 by plasmid inhibits MCF-7 cell growth and induces although miRNAs have been the subject of extensive research apoptosis. Subsequently, RTKN is identified as a potential in recent years, the molecular basis of miRNA-mediated gene miR-145 target by bioinformatics. Using reporter constructs, regulation and the effect of these genes on tumor growth we show that the RTKN 3' untranslated region (3'UTR) remain largely unknown because of our limited understanding carries the directly binding site of miR-145. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .