Evaluation of Sacred Lotus (Nelumbo Nucifera Gaertn.) As an Alternative Crop for Phyto-Remediation by Warner Steve Orozco Oband

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Sacred Lotus (Nelumbo Nucifera Gaertn.) As an Alternative Crop for Phyto-Remediation by Warner Steve Orozco Oband Evaluation of Sacred Lotus (Nelumbo nucifera Gaertn.) as an Alternative Crop for Phyto-remediation by Warner Steve Orozco Obando A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 6, 2012 Keywords: Aquaponics, Heavy Metals, Constructed Wetlands, CWs Copyright 2012 by Warner Orozco Obando Approved by Kenneth M. Tilt, Chair, Professor of Horticulture Floyd M. Woods, Co-chair, Associate Professor of Horticulture Fenny Dane, Professor of Horticulture J. Raymond Kessler, Professor of Horticulture Jeff L. Sibley, Professor of Horticulture Wheeler G. Foshee III, Associate Professor of Horticulture Abstract Lotus, Nelumbo nucifera, offers a wide diversity of uses as ornamental, edible and medicinal plant. An opportunity for growing lotus as a crop in Alabama also has the potential for phyto-remediation. Lotus was evaluated for remediation of trace elements focusing on manganese (Mn), organic compounds targeting s-metolachlor and filtering aquaculture waste water. Lotus was evaluated for filtering trace elements by establishing a base line for tissue composition and evaluating lotus capacity to grow in solutions with high levels of Mn (0, 5, 10, 15, or 50 mg/L). Increasing Mn concentrations in solution induced a linear increase in lotus Mn leaf concentrations. Hyper-accumulation of Al and Fe was detected in the rhizomes, while Na hyper-accumulated in the petioles, all without visible signs of toxicity. Mn treatments applied to lotus affected chlorophyll content. For example, chlorophyll a content increased linearly over time while chlorophyll b decreased. Radical scavenging activity (DPPH) did not change over time but correlated with total phenols content, showing a linear decrease after 6 weeks of treatment. Ascorbic acid levels increased in response to lower Mn concentrations but at 50 mg/L or higher Mn treatment level, ascorbic acid levels were reduced. Lotus was evaluated for its potential as a phyto-remediator of organic compounds by growing plants in different concentrations of s-metolachlor. In seedlings, biomass accumulation was affected by the treatments. However, membrane integrity, respiration, and photosynthesis were not affected by the treatments. Mature plants did not show symptoms of toxicity but chlorophyll (Chl) changes in content were related to s-metolachlor concentrations (Chl a content ii increased while Chl b decreased). Potential s-metolachlor metabolites were found in rhizomes from treated seedlings. However, levels detected were too low to be identified. In addition, traces of s-metolachlor applied to seedlings were found in rhizomes, as well as, in leaves from treated mature plants. Lotus proved to be an effective phyto-remediator of nutrient + run-off (NH4 , NO3, P ) and suspended solids from waste water from intense aquaculture systems. iii Acknowledgments The author would like to express most sincere appreciation to Drs. Ken M. Tilt, Floyd M. Woods, Fenny Dane, Wheeler G. Foshee, J. Raymond Kessler, Jeff L. Sibley, Jesse A. Chappell, David J. Cline, Deacue Fields, and Juan Carlos Díaz for their guidance and wisdom through the pursuit of this degree. To my wife Monica Orozco Jenkins, for all her support and love during the process of this program. This work would have never reached conclusion without the blessing of Bernice Fischman whose wonderful personality and willingness to help kept me motivated and inspired. To Jo Anne Hall, who always believed and helped during my graduate academic career. Special thanks to John Olive, Arnold Caylor, George Griffith, and Grant Mitchell. To Bernice Barnette, Nancy Heard, and Tamikka Thomas who always were there when needed. The author is ever grateful to his mother María de los Angeles Orozco, his father Lusvin Mora Gutiérrez, his grandmother María Evangelina Obando Cardenas, his grandfather Francisco Orozco Muñoz, his aunts Sergia Orozco Muñoz, Gloria Orozco Obando, Lidia Orozco Obando, Marjorie Torres Villegas, his uncle Omar Antonio Mora Gutiérrez and to María H. Hidalgo, whose inspiration, confidence and prayers made this possible. To my brothers and sisters who always being there supporting me, I am grateful: Henry Orozco Obando, Luis Roberto Carmiol, Ronny Villegas, Dwight Mora Hidalgo, William Morgan Guevara, Walter Antonio Morgan Guevara, Ricardo Segura Amador, Miguel Antonio Matarrita Perez, Edwin Reyes, Patricia Rojas, Luis Flores Papuchin Capac, Viviana Leitón, María Ruth Martínez, Paula Biles, Kelly Billing, Nelly Jimenez, Victoria Ramírez, Roxana Ramírez, Kattia Mora Hidalgo, Josue Mora iv Laura, Steve and Bill Bancroft I want to thank you for your friendship, help and support. Finally, I know there is a whole group of people that I am not including; however, I really hope to have the opportunity to show you my appreciation. v Table of Contents Abstract ......................................................................................................................................... ii Acknowledgments........................................................................................................................ iv List of Tables ................................................................................................................................ x List of Figures ............................................................................................................................. xii Chapter 1: Review of Literature .................................................................................................. 1 1.1. Extension Programming for Introducing Lotus as a New Crop in Alabama ........... 1 1.1.2. Natural History of Lotus ........................................................................................ 2 1.1.2.1. Origin and Geographical Distribution of Lotus ........................................... 2 1.1.2.2. Biology of the Species ................................................................................. 4 1.1.2.3. Cultural Influences ....................................................................................... 6 1.1.2.4. Plant Uses ..................................................................................................... 7 1.1.2.4.1. Medicinal and Nutritional Values ...................................................... 8 1.1.3. Cultivation ........................................................................................................... 10 1.1.3.1. Sexual and Asexual Propagation ............................................................... 10 1.1.3.2. Soil Conditions ........................................................................................... 11 1.1.3.3. Fertilization ................................................................................................. 12 1.1.3.4. Container Management .............................................................................. 12 1.1.3.5. Pond Management ..................................................................................... 13 1.1.4. Vegetable Production .......................................................................................... 14 1.1.4.1. Field Production ......................................................................................... 14 vi 1.1.4.2. Planting and Harvest .............................................................................................. 15 1.1.4.3. Packaging and Postharvest Handling ......................................................... 16 1.1.4.4. Markets ...................................................................................................... 18 1.1.5. Cultivation of Lotus in Controlled Environments ............................................... 18 1.1.6. Evaluating How Plants Can Help to Clean up Polluted Environments ............... 19 1.1.6.1. Metolachlor as an Environmental Pollutant ................................................ 21 1.1.7. Phyto-remediation of Organic Compounds (S-metolachlor) ............................... 23 1.1.8. Phyto-remediation of Heavy Metals and Nutrient Run-off ................................. 24 1.2. Heavy Metal Effect on Antioxidant Capacity of Lotus Leaves ..................................... 26 1.3. Central Theme of Research ............................................................................................ 29 1.4. Literature Cited .............................................................................................................. 30 Chapter 2: Phyto-Remediation of S-Metolachlor Using Lotus (Nelumbo nucifera Gaertn.) ..... 38 2.1. Abstract .......................................................................................................................... 38 2.2. Introduction .................................................................................................................... 39 2.3. Materials and Methods ................................................................................................... 42 2.4. Results ............................................................................................................................ 50 2.5. Discussion ...................................................................................................................... 53 2.6. Literature Cited .............................................................................................................. 59 Chapter 3: Evaluation of Trace Metals Phyto-remediation Potential in Ornamental Lotus (Nelumbo nucifera
Recommended publications
  • General Awareness Questions May 2017
    www.leadthecompetition.in GENERAL AWARENESS QUESTIONS POSTED IN MAY 2017 1. Rodrigo Duterte is the President of a.Indonesia b. Philippines c. Thailand d. Singapore 2. Monazite sand in India is a rich source of a. Thorium b. Platinum c. Uranium d. Gold 3. Nelumbo nucifera is India's a. National tree b. National fruit c. National bird d. National flower 4. Guru Gobind Singh died at which of the following places? a. Patna b. Amritsar c. Nanded d. Anandpur 5. Vasco da Gama reached Indian in the year a. 1498 b. 1496 c. 1494 d. 1492 6. Which is the most malleable and ductile metal? a. Gold b. Silver c. Platinum d. Aluminium 7. Snellen chart is used by a. Astronomers b. Optometrists c. Sailors d. Pilots 8. Which of these is endemic to Western Ghats? a. Hangul b. Hoolock Gibbon c. Sloth Bear d. Liontailed Macaque 9. Abdul Kalam island was previously known as a. Sagar island b. Salsette island c. Wheeler island d. Havelock island 10. Corruption Perception Index is published by a. Transparency International b. World Trade Organisation c. International Monetary Fund d. World Bank 11. Oceanic pole of inaccessibility (Point Nemo) is located in the a. Indian Ocean b. Arctic Ocean c. Atlantic Ocean d. Pacific Ocean 12. The number of electrons in the outermost shell of an inert gas are a. eight b. six c. four d. two 13. Olympus mons is a mountain located on which planet? a. Venus b. Mars c. Jupiter d. Saturn 14. Which tournament is referred to as Roland Garros? a.
    [Show full text]
  • Minimum Dietary Diversity for Women a Guide to Measurement
    FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S.
    [Show full text]
  • Sedges in Our Wetlands Typha Latifolia Schoeneplectus (Scirpus) Acutus • Native, Common, Sedge Family, up to 10’ Tall and S
    TULE (COMMON and CALIFORNIA) CATTAIL, COMMON/BROAD-LEAVED BULLRUSH (COMMON and SOUTHERN) Sedges in Our Wetlands Typha latifolia Schoeneplectus (Scirpus) acutus • Native, common, sedge family, up to 10’ tall and S. californicus • Wetland Obligate in fresh water up to 0.8 m • Native, common, sedge family, up to10’ tall “Sedges have edges. Rushes are round. depth • Wetland Obligate, in standing freshwater Grasses have knees that bend to the ground. ” • Intrudes into marshes when salinity decreases marshes, can tolerate slight salinity Description: The Cyperaceae are a family of graminoid (grass-like), monocot- • Can block channels, but lays down in high flow • Rhizomatous, dense monotypic colony yledonous flowering plants known as sedges. The family is large, with some 5,500 • Used as a bioremediator to absorb pollutants known species described in about 90 genera, the largest being the "true sedges" ge- • Terminal panicle inflorescence nus Carex with over 2,000 species. The stems of Cyperaceae are often triangular • Can be weaved into baskets, mats, seats, and • California Tule – bright green triangular stems (found in and mostly solid, whereas those of grasses are never triangular and are usually hol- binding for tule canoes ECWRF ponds) low except at the nodes. Sedges differ from grasses in many features, most obvious- Ethnobotany: All parts of the cattail are edible ly in their sheaths and the arrangement of the leaves on the stem. The leaves are ar- • Common Tule – grey green round stem (found in Shollen- when gathered at the appropriate stage of growth. ranged such that they spiral around the stem in 3-ranks and have a basal portion that berger Park channel) The young shoots are cut from the rhizomes sheaths the stem.
    [Show full text]
  • Taro Improvement and Development in Papua New Guinea
    Taro Improvement and Development in Papua New Guinea - A Success Story Abner Yalu1, Davinder Singh1#, Shyam Singh Yadav1 1National Agricultural Research Institute, Lae, PNG Corresponding author email: [email protected] 2Current address: CIMMYT, Nairobi, Kenya [email protected] Asia-Pacific Association of Agricultural Research Institutions c/o FAO Regional Office for Asia and the Pacific Bangkok, Thailand For copies and further information, please write to: The Executive Secretary Asia-Pacific Association of Agricultural Research Institutions (APAARI) C/o FAO Regional Office for Asia & the Pacific (FAO RAP) Maliwan Mansion, 39 Phra Atit Road Bangkok 10200, Thailand Tel : (+66 2) 697 4371 – 3 Fax : (+66 2) 697 4408 E-Mail : [email protected] Printed in August 2009 Foreword Taro (Colocasia esculenta) is a crop of prime economic importance, used as a major food in the Pacific Island Countries (PICs). In Papua New Guinea (PNG), taro is consumed by the majority of people whose livelihood is mainly dependent on subsistence agriculture. It is the second most important root staple crop after sweet potato in terms of consumption, and is ranked fourth root crop after sweet potato, yam and cassava in terms of production. PNG is currently ranked fourth highest taro producing nation in the world. This success story illustrates as to how National Agricultural Research Institute (NARI) of PNG in collaboration with national, regional and international partners implemented a south Pacific regional project on taro conservation and utilization (TaroGen), and how the threat of taro leaf blight disease was successfully addressed by properly utilizing national capacity. So far, four high yielding leaf blight resistant taro varieties have been released to the farmers, which are widely adopted now.
    [Show full text]
  • Maafala Fact Sheet
    MA‘AFALA This popular breadfruit variety originated in Samoa and Tonga and has been grown in Hawai‘i for decades. Ma‘afala is a fast-growing tree that tends to be shorter, with a more compact shape than most breadfruit varieties. Trees can begin bearing fruit in 2-1/2 to 3 years. 16-month-old tree 36-month-old tree Season in Hawai‘i 100 Ma‘afala ‘Ulu 0 Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Average seasonality profile of Ma‘afala compared to the Hawaiian ‘Ulu. BREADFRUIT INSTITUTE - NATIONAL TROPICAL BOTANICAL GARDEN 3530 Papalina Road, Kalaheo, Kauai, Hawaii 96741 Phone: 808.332.7324 ext 221 Fax: 808.332.9765 www.ntbg.org/breadfruit MA‘AFALA Weight 1.4 - 2.3 lbs (634-1053 g) 1.7 lbs (783g) average Shape & Size Oval; 5-6“ long x 4-5“ wide Edible Portion 83% Protein Ma’afala ‘Ulu Taro White Rice Potato g/100 g 0 1 2 3 4 5 Fiber Ma’afala ‘Ulu Taro White Rice Potato g/100 g 0 2 4 6 8 10 Potassium Ma’afala ‘Ulu Taro White Rice Potato mg/100 g Ma‘afala produces 150-200, or more, 0 250 500 750 1000 1250 delicious, nutritious fruits per year. The fruit has a creamy to pale yellow flesh and is Calcium usually seedless. The flesh has a soft, tender Ma’afala texture when cooked. ‘Ulu Breadfruit is a starchy energy-rich Taro White Rice carbohydrate food and is also gluten free. Potato mg/100 g Ma‘afala is higher in protein (3.3%) than 0 20 40 60 80 100 most breadfruit varieties, and flour made from the dried fruit contains 7.6% protein.
    [Show full text]
  • American Samoa Series 1 Elementary (K–6)
    American Samoa Series 1 Elementary (K–6) TABLE OF CONTENTS Why Study Cultures? . 2 Traditions Belief in God . 3 Folklore & Language A Unique Language . 6 Food The Samoan Appetite and the Coconut . 8 Cross-cultural Contributions Samoan Rhythm . 11 Reference Material Facts about American Samoa . 13 History and Holidays . 14 Additional Resources . 15 Visuals . 17 F OOD THE SAMOAN APPETITE AND THE COCONUT Samoans love to eat. They use a variety of tropical foods, but the most common food is the coconut. Every part of the coconut can be used, from the juice to the husk. There is even a famous legend that describes where the coconut came from. Starting Points 1. Ask the students to guess what Samoans typically eat. Point out where Samoa is on a globe and show them how it is surrounded by the ocean. Discuss how much Samoans must depend on both the sea and the land for their food. 2. Discuss how the Samoan diet differs from the United States diet. 3. Show the students a coconut and discuss it. Have they ever tasted one? Think of all the parts of the coconut and how these things could be used (i.e., husk, meat, shell, milk). Information The Samoan Diet and the Coconut Samoans eat a variety of food, including tropical crops, root vegetables, fresh fruit, chicken, pork, and seafood. However, the coconut is the most common food product in the Samoan diet. The niu is a young coconut that is not fully ripened. Every part of a coconut can be used in food preparation.
    [Show full text]
  • Sacred Lotus Nelumbo Nucifera
    Sacred lotus Nelumbo nucifera Description Introduced to North America as a water garden plant. Habit Perennial, emergent aquatic plant that produces individual flowers and leaves directly from the root system. Leaves Float on the surface of the water or are held up to 6 ft above the water by their petioles; circular peltate blades, 0.75-2.5 ft across, medium green or blue-green in color, hairless; margins are smooth, often undulating up and down, leaves that are above water are depressed toward the middle; many veins radiate from the center and become forked. Source: MISIN. 2021. Midwest Invasive Species Information Network. Michigan State University - Applied Spatial Ecology and Technical Services Laboratory. Available online at https://www.misin.msu.edu/facts/detail.php?id=219. Stems Light green in color, terete, hairless, smooth or somewhat prickly, contains hollow chambers that keep stems (petiole) erect and convey oxygen to the root system. Flowers Held up 6 ft above the water surface by peduncles (flowering stalks), 4-8 in across, consisting of about 15 pink tepals, a golden yellow receptacle, and a dense ring of golden yellow stamens; receptacle is located in the center of the flower, cone shaped, and has 15-35 short styles that look like small bumps; blooms during the summer and lasts for 2-3 months; short lived opening during the day and loosing their petals by afternoon; fragrant. Fruits and Seeds Each flower is replaced by a seedpod spanning 3-4 in across and 0.75 in deep; becomes dark brown with maturity; individual seeds are exposed in small chambers; seedpods bend downward to release seeds.
    [Show full text]
  • June – July 2019
    C A R E E R G U I D A N C E B U L L E T I N MONTH : JUNE – JULY 2019 1 88 June – July 2019 SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI UNIVERSITY SKILL DEVELOPMENT, EMPLOYMENT & ENTREPRENEURSHIP, INFORMATION & AND GUIDANCE BUREAU C A R E E R G U I D A N C E B U L L E T I N MONTH : JUNE – JULY 2019 2 SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI UNIVERSITY SKILL DEVELOPMENT, EMPLOYMENT & ENTREPRENEURSHIP, INFORMATION & AND GUIDANCE BUREAU C A R E E R G U I D A N C E B U L L E T I N MONTH : JUNE – JULY 2019 UNIVERSITY SKILL 3DEVELOPMENT, EMPLOYMENT AND ENTREPRENEURSHIP, INFORMATION AND GUIDANCE BUREAU C A R E E R G U I D A N C E B U L L E T I N Month : June - July 2019 No - 88 CONTENTS PAGE S. N. PARTICULARS NO. MAHARASHTRA PUBLIC SERVICE COMMISSION TENTATIVE 01 1 TIME TABLE OF COMPETITIVE EXAMINATION 2019 02 SBI RECRUITMENT 2019 2 03 WRD RECRUITMENT 2019 2 04 BPCL RECRUITMENT 2019 3 05 ONGC RECRUITMENT 2019 3 06 MINISTRY OF DEFENCE RECRUITMENT 2019 4 07 5 NYKS RECRUITMENT 2019 MAHARASHTRA INDUSTRIAL DEVELOPMENT CORPORATION 08 6 RECRUITMENT / MIDC RECRUITMENT 2019 09 VIZAG STEEL RECRUITMENT 2019 7 10 IOCL RECRUITMENT 2019 9 11 MAHATRIBAL RECRUITMENT 2019 10 12 SAIL RECRUITMENT 2019 10 13 SSB RECRUITMENT 2019 11 14 NVS RECRUITMENT 2019 12 15 ARDE PUNE RECRUITMENT 2019 13 16 CURRENT AFFAIRS OF DECEMBER 2018 13 17 CURRENT AFFAIRS OF JANUARY 2018 16 18 CURRENT AFFAIRS QUESTIONS 24 SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI UNIVERSITY SKILL DEVELOPMENT, EMPLOYMENT & ENTREPRENEURSHIP, INFORMATION & AND GUIDANCE BUREAU C A R E E R G U I D A N C E B U L L E T I N MONTH : JUNE – JULY 2019 1 Maharashtra Public Service Commission Tentative Time Table of Competitive Examination 2019 Date of Duration of Duration of Sr.
    [Show full text]
  • Int. J. Biosci. 2017
    Int. J. Biosci. 2017 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 11, No. 4, p. 144-149, 2017 RESEARCH PAPER OPEN ACCESS Ability of local species plant in surface flow constructed wetland to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in sasirangan wastewater Nopi Stiyati Prihatini*1, Jumar2, Rima Sari Arisnawati1, Raudhyna Zata Nadhillah1, Romadhini Putri Wulandari1, Dwi Apriliani Fazriati1, Soemarno3 1Department of Environmental Engineering, Lambung Mangkurat University, Indonesia 2Department of Agrotechnology, Lambung Mangkurat University, Indonesia 3Department of Soil Sciences, University of Brawijaya, Malang, Indonesia Key words: BOD, COD, Constructed wetlands (CW), Sasirangan http://dx.doi.org/10.12692/ijb/11.4.144-149 Article published on October 21, 2017 Abstract Sasirangan wastewater has characteristics of high pH as well as high level of biochemical oxygen demand(BOD)and chemical oxygen demand(COD). Sasirangan industries produce large amount of wastewater, which then is directly discarded around the environment without treatment processes. The effect afterward is the oxygen supply in the water diminishes and eventually triggers the activity of anoxic-anaerobic microorganisms that produces odors. Constructed wetlands are able to become the alternative to waste treatment technology at the economical household scale industries. This study was conducted to determine the ability of the removal of BOD and COD in the sasirangan effluent with constructed wetlands (CW) surface flow system using the batch method. Plants used in CW is Hydrilla verticillata, purun tikus (Eleocharis dulcis) and lotus (Nelumbo nucifera). CW was running for 0, 3, 6, 9 and 12 days.
    [Show full text]
  • Journal of the Oklahoma Native Plant Society, Volume 4, Number 1
    30 Oklahoma Native Plant Record Volume 4, Number 1, December 2004 Vascular Flora of the Chouteau Wildlife Management Area Wagoner County, Oklahoma Bruce W. Hoagland Forrest Johnson (deceased) Oklahoma Biological Survey Oklahoma Biological Survey and Department of Geography University of Oklahoma University of Oklahoma Norman, OK 73019 Norman, OK 73019 e-mail: [email protected] This article reports the results of a vascular plant inventory of the Chouteau Wildlife Management Area in eastern Oklahoma. One hundred eighty-one species of vascular plants were collected from 144 genera and 63 families. The families with the greatest number of species were the Asteraceae (25), Poaceae (22), and Fabaceae (18). Fifty-seven species were annuals, four biennials, and 120 were perennials. Thirty-nine woody plant species were present. Twenty-one species exotic to North America were collected representing 11.6% of the flora. Azolla caroliniana was the only species tracked by the Oklahoma Natural Heritage Inventory found. This study reports 148 species previously not documented in Wagoner County. INTRODUCTION from 35.86o N to 35.85o N and longitudinal The objectives of this study were extent from 95.34o W to 95.37o W. The twofold: to fill a gap in floristic data for CHWMA is located within the subtropical eastern Oklahoma and provide resource humid (Cf) climate zone (Trewartha 1968). managers at the Chouteau Wildlife Summers are warm (mean July temperature Management Area (CHWMA) with a = 27.7o C) and humid, whereas winters are comprehensive species list. Prior to 1996, relatively short and mild (mean January when collecting began for this study, 198 temperature = 2.9o C).
    [Show full text]
  • Two Cryptic Species of Lotus (Fabaceae) from the Iberian Peninsula 21-45 Wulfenia 27 (2020): 21– 45 Mitteilungen Des Kärntner Botanikzentrums Klagenfurt
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2020 Band/Volume: 27 Autor(en)/Author(s): Kramina Tatiana E., Samigullin Tahir H., Meschersky Ilya G. Artikel/Article: Two cryptic species of Lotus (Fabaceae) from the Iberian Peninsula 21-45 Wulfenia 27 (2020): 21– 45 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Two cryptic species of Lotus (Fabaceae) from the Iberian Peninsula Tatiana E. Kramina, Tahir H. Samigullin & Ilya G. Meschersky Summary: The problem of cryptic species is well known in taxonomy of different groups of organisms, including plants, and their recognition can contribute to the assessment of global biodiversity and the development of conservation methods. Analyses of Lotus glareosus and related taxa from the Iberian Peninsula based on various types of data (i.e. sequences of nuclear ribosomal ITS-1-2, 5’ETS and cpDNA trnL-F, seven loci of nuclear microsatellites) revealed that the material earlier determined as ‘L. glareosus’ is subdivided into two genetically distant groups: L. carpetanus, related to L. conimbricensis, and L. glareosus, included in the L. corniculatus complex. Though only slight morphological distinctions were found between them, significant genetic differences comparable to those between sections of the genus Lotus (p-distance 0.07– 0.08 in ITS, 0.060 – 0.067 in ETS and 0.010 – 0.013 in trnL-F; substitution number 43 – 47 bp in ITS, 22–24 bp in ETS and 12–14 bp in trnL-F) and no evidence of genetic exchange suggest that these groups may represent two deeply diverged lineages that should be treated as two separate species.
    [Show full text]
  • CULTURE and BIODIVERSITY (Volume I)
    CULTURE AND BIODIVERSITY (Volume I) PREPARED UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN- INDIA Kailash C. Malhotra Coordinator 2003 Thematic Working Group on Culture and Biodiversity Mr. Feisal Alkazi Ms. Seema Bhatt (TPCG Member) Dr. Debal Deb Mr. Yogesh Gokhale Dr. Tiplut Nongbri Dr. D.N. Pandey Shri Shekhar Pathak Prof. Kailash C. Malhotra, Co-ordinator 2 (Kailash C.Malhotra, Coordinator, Thematic Group on Culture and Biodiversity (2003) . CULTURE AND BIODIVERSITY. Prepared under National Biodiversity Strategy and Action Plan, Executed by Ministry of Environment and Forests (Government of India), technical implementation by Technical and Policy Core Group coordinated by Kalpavriksh, and administrative coordination by Biotech Consortium India Ltd., funded by Global Environment Facility through United Nations Development Programm 178 pp.) 3 CONTENTS EXECUTIVE SUMMARY 6 ABBREVIATIONS USED 11 1. INTRODUCTION 12 1.1 National Biodiversity Strategy and Action Plan - India 1.2 Thematic Working Group on Culture and Biodiversity 1.3 Objectives 1.4 Methodology 2. CULTURE AND BIODIVERSITY 19 2.1 INTRODUCTION 2.2 The Conceptual Frame Work 2.2.1 Species Protection 2.2.2 Habitat Protection 2.2.3 Landscape Protection 3. POSITIVE – LINKS BETWEEN CULTURE AND BIOLOGICAL DIVERSITY 21 4. THE ROLE OF RELIGIOUS ETHICS IN BIODIVERSITY CONSERVATION IN INDIA 68 5. NEGATIVE – LINKS BETWEEN CULTURE AND BIOLOGICAL DIVERSITY 77 6. WEAKENNING OF LINKS BETWEEN CULTURE AND BIODIVERSITY 84 7. INITIATIVES TO REESTABLISH AND / OR STRENGTHEN POSITIVE LINKS BETWEEN CULTURE AND BIODIVERSITY 99 8. THE ROLE OF FOLK MUSIC AND DRAMA, ORAL LEGENDS AND PHOTOGRAPHY IN BIODIVERSITY CONSERVATION 116 9. RECOMMENDATIONS 121 ACKNOWLEDGEMENTS 127 4 REFERENCES CITED 129 APPENDICES 137 I Composition of the Thematic Working Group on Culture and Biodiversity.137 II The modified Thematic Concept Note.
    [Show full text]