bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449570; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylodynamic assessment of control measures for highly pathogenic avian 2 influenza epidemics in France 3 Debapriyo Chakraborty1*, Claire Guinat2,3, Nicola F. Müller4, Francois-Xavier Briand5, 4 Mathieu Andraud5, Axelle Scoizec5, Sophie Lebouquin5, Eric Niqueux5, Audrey Schmitz5, 5 Beatrice Grasland5, Jean-Luc Guerin1, Mathilde C. Paul1 and Timothée Vergne1 6 7 1IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, 8 France. 9 2Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland 10 3Swiss Institute of Bioinformatics (SIB), Switzerland 11 4Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Centre, Seattle, 12 Washington State, USA 13 5The French Agency for Food, Environmental and Occupational Health & Safety (ANSES) 14 Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France 15 *Corresponding author email:
[email protected] 16 17 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449570; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 21 Abstract 22 Phylodynamic methods have successfully been used to describe viral spread history but their 23 applications for assessing specific control measures are rare.