energies Article Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials Vasileios Ntouros 1,* , Ioannis Kousis 2,3, Dimitra Papadaki 1 , Anna Laura Pisello 2,3 and Margarita Niki Assimakopoulos 1 1 Group Building Environmental Research, Department of Physics, National and Kapodistrian University of Athens, University Campus, 157 84 Athens, Greece;
[email protected] (D.P.);
[email protected] (M.N.A.) 2 CIRIAF, Interuniversity Research Center, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy;
[email protected] (I.K.);
[email protected] (A.L.P.) 3 Department of Engineering, University of Perugia, Via G. Duranti 97, 06125 Perugia, Italy * Correspondence:
[email protected] Abstract: In the last twenty years, research activity around the environmental applications of metal– organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The Citation: Ntouros, V.; Kousis, I.; findings revealed that the main environmental weak points identified during production were: (a) the Papadaki, D.; Pisello, A.L.; use of dimethylformamide (DMF) and methanol (MeOH) as substances impacting environmental Assimakopoulos, M.N.