General Notes on Emergy and Review of 3 Papers”

Total Page:16

File Type:pdf, Size:1020Kb

General Notes on Emergy and Review of 3 Papers” 1 “DE EMERGYARUM NATURA” (= about the nature of Emergies) or “ALL I WANTED TO SAY ABOUT EMERGY ANALYSIS IN THE LAST 20 YEARS AND I WAS NEVER ABLE TO SAY” or “GENERAL NOTES ON EMERGY AND REVIEW OF 3 PAPERS” By Mario Giampietro (March, 2000) This document is divided in two 2 parts. Part 1 deals with general issues related to the general approach proposed by HT Odum and the various applications of it, as performed by the Emergy school (as perceived by an outsider). Part 2 presents the review of 3 papers. They are used to discuss general points in relation to specific applications of this approach. ****************************************************************** The text needs a lot of editing, it is very redundant, and probably is affected by several misunderstandings about Emergy analysis, for sure it contains also incorrect statements, etc. etc. However, I am sending it to you the way it is for 3 reasons: (1) the more I read it over the more I am adding redundancy, misunderstandings and incorrect statements. (2) the idea of this memo is to open a debate and stimulate a discussion, so that the more weak spots and arguable statements are present in the text the more we can discuss. (3) it is important to save time (especially for the review of the papers). Therefore, I prefer not to wait for the feed-back of people that could help me in doing a better job (e.g. Kozo Mayumi). In any case the most important people that can help in getting the discussion on Emergy on the right track here are basically the three of you. 2 PART 1 – General Issues “All models are wrong, some are useful” – Anonymous 1. My relation with “Emergy studies” and my goals with this memo 1.1 The urgency of doing something Driven by the growing debate on sustainability there is a growing search for analytical tools, which can be used for accounting environmental services and/or defining biophysical constraints on the economic process. These methods are needed to complement economic analyses that, when used alone, tend to miss important aspects of sustainability. This skyrocketing demand for exploring new representative tools led to a certain collapse in the “quality control” on published paper also on very good scientific journals. See for example, the publication of the paper assessing the value of the planet in 33 trillions of US-1994-dollars on Nature, or the widespread publication of Ecological Footprint papers on reputable journals. Actually, the paper published on Nature would have not be accepted as a “term paper” of freshmen in any decent college of economics, as well as the vast majority of “ecological footprint assessments” are just a sloppy applications of the rationale proposed by HT for environmental accounting. In my view, this is a clear sign that there is an urgent need to supply something decent to such a demand. 1.2 My view on HT work I am convinced that the rationale proposed by HT Odum for environmental accounting is one of the most serious attempt – among the available ones - to deal with the task of generating indicators able to track changes and effects of human intervention within ecological systems. As a matter of fact, HT contribution is much more than that. His theoretical analysis of self- organization of energy and information can also be used for many other tasks. (1) Performing qualitative analysis of evolutionary trends for typologies (categories) of dissipative systems identified/characterized by a certain network structure. Even though nobody seems to like the adjective “qualitative” when used for models (many seem to be convinced that models must be totally quantitative and fully formalized to be valuable), I happen to believe exactly the contrary. In my view, in this moment, shortage of qualitative models for dealing with evolutionary trends of human development, is the most important bottleneck for human ability to build anticipatory systems in relation to the sustainability predicament. Probably, this is one of the applications of Emergy in which I see the largest potentiality. (2) Assessing the “ecological footprint” or various indices of “environmental loading” of the economic process (= generating families of “biophysical indicators of unsustainability” – following the suggestion of Martinez Alier as a general name for this class of indices). That is, it can compare the scale of human activity to the scale of ecological activity (= the quantitative and qualitative information totally missed by economic analyses). (3) Assessing the net effect of trade between countries operating at different levels of environmental loading and technological development. I do believe that the rationale proposed by HT Odum makes possible to generate several models able to do all these things. The problem I see with current applications is that all these different tasks cannot be achieved by using a single common model. That is, you cannot do different things using the same graph and using a single given set of fixed transformities. Probably the people of the Emergy school share this opinion with me. However, if this is the case, every time Emergy analysis is applied to do one of these different tasks, then, each one of these different applications should come with a discussion, in the material and methods section, on: (A) how and why the graph(s) used in the specific analysis is(are) “qualitative different” from other graphs used in other studies in which they were used to do other tasks (depending on what of these different jobs are performed in these different studies), and (B) when and if certain fixed transformities calculated for certain systems - by using certain graphs (and then 3 listed in a book) - can be applied to the specific system under investigation (and which is characterized using a specific graph, that could be similar or not similar to that used for calculating the standard transformity elsewhere). 1.3 The tactical aspect There is another important aspect to be considered in this discussion. After admitting that HT approach is very good and has huge potentialities, for sure its development would greatly benefit from a debate with the rest of the scientific community. This for two reasons: (1) because specific applications could contain a few bugs and the debate with other scientists will produce fixes for them at a much faster pace (if 10,000 people work on fixing a problem they do faster than 100). (2) because when dealing with complex systems, it is not possible to have the “best model” of them. The very step of problem structuring (which relevant qualities of the system have to be reflected in its analytical representation) requires always an input from the users (a “value” call from the humans). Therefore, if the Emergy school wants to be useful and wants that this methodology be used by other disciplines as a complementing representative tool (e.g. by economists), it must learn how to listen and talk to them. Remaining in a “ghetto” does not pay. According to the maximum power principle there are moments (e.g. when colonizing a very large empty niche) in which it is important to get there first. I started this memo by noticing that we are exactly in one of these moments, we are assisting to several attempts of “speciation” of biophysical analyses of sustainability. Therefore, we are in one of the cases in which the law (different version of the maximum power) of “the survival of the first” fully applies (remember the “qwert” lock-in for the lay out of keys in keyboards. This sequence that was optimal in mechanical typing machines, has been kept also in keyboards of computers, where is no longer optimal . .). 1.4 My goals Finally, we arrived to what are my goals in writing this long memo. I believe that it is time to start a serious and deep discussion on HT work. So that it will be possible to provide to the academic world: (1) clear explanations of the theoretical basis of the approach, and (2) practical examples of the advantages and potentiality of this approach compared with others. I am not saying that the approach now does not have theoretical basis, but simply that the message provided by the Emergy people to explain its foundations, until now, did not go through clear enough. Probably, it is also time to think how such a message could be send in a different way when interacting with the external world. The way experimented up to now did not work. The way I see it, it is not about specifying better the algorithm used to solve the graph (= what Sergio refers to as “better specify the algebra of the approach”). That is, the type of discussion that Mark Brown and Bob Herendeen had in the paper published on Ecological Economics. This debate can be useful for clarifying the ideas of those already “in”, but very unlikely to attract new people from the outside. Nor such a discussion on how to strength the method can be focused on finding the ultimate calculation of “the right” set of transformities. Actually a deep discussion on “transformities” could (or rather should) lead (hopefully) to the conclusion that such a thing (= “the right transformity to be listed in the book for future calculations”) simply does not exist. Depending on what “qualities” of the system we want to study and map with our encoding variables, we could have to use different numerical values for “fixed transformities” or work with “changing transformities”. As a matter of fact, if I understand well the feed-back received in previous interaction with HT, Mark and Sergio, this is already a point accepted by the Emergy school.
Recommended publications
  • Emergy and Efficiency Analysis of Historical Bubbles
    Emergy Synthesis 10, Proceedings of the 10th Biennial Emergy Conference (2019) 29 Emergy and Efficiency Analysis of Historical Bubbles Mark P. A. Ciotola ABSTRACT Human societies comprise energy-consuming beings, who are vast consumers of energy, as both individual organisms and organized societies. Hence, in principle, it should be possible to utilize thermodynamic approaches to generate models of historical phenomena. The existing energy-related efficiency-discounted exponential growth (EDEG) framework for historical resource bubbles and dynasties involving a nonrenewable resource is presented. As EDEG is presented, its relationship to emergy-related concepts and approaches are explored and analyzed. Finally, future research possibilities for expanding the physical, closed system framework behind EDEG into the open system emergy framework. CONTEXT A framework for a science of human history has been developed from a physics perspective utilizing no-renewable quantities and approximating historical dynasties as closed systems. However, it is important to also consider open systems and better constrain models with better physical data. The emergy approach offers both capabilities. This paper will explore emergy concepts as related to past work. INTRODUCTION Following the success of physical scientists such as Isaac Newton with the law of universal gravitation, it had been the dream of some social scientists to develop a science of society and history. Coming at the top of a wave of scientific discoveries, and excited also by the political and social changes in the European world around him, he [father of Sociology August Comte] conceived the idea, which was shared in varying degrees by other thinkers of his time, that science might be unified and used in such a way as to harmonize the discords of human life (Marvin, 1936).
    [Show full text]
  • Self-Organization and the Maximum Empower Principle in the Framework of Max-Plus Algebra
    Self-organization and the Maximum Empower Principle in the Framework of max-plus Algebra Chams LAHLOU∗ and Laurent TRUFFETy Department of Automation, Production and Computer Sciences, IMT-A, Nantes, France August 31, 2021 Abstract Self-organization is a process where order of a whole system arises out of local interactions between small components of a system. Emergy, spelled with an 'm', defined as the amount of (solar) energy used to make a product or service, is becoming an important ecological indicator. The Maximum Empower Principle (MEP) was proposed as the fourth law of thermodynamics by the ecologist Odum in the 90's to explain observed self-organization of energy driven systems. But this principle suffers a lack of mathematical formulation due to an insufficiency of details about the underlying computation of empower (i.e. emergy per time). For empower computation in steady-state an axiomatic basis has been developed recently by Le Corre and the second author of this paper. In this axiomatic basis emergy is defined as a recursive max-plus linear function. Using this axiomatic basis and a correspondance between ecological theory and dynamic systems theory, we prove the MEP. In particular, we show that the empower computation in steady-state is equivalent to a combinatorial optimization problem. Keywords: Emergy, Graph, Max-plus algebra, Sustainability, Fourth law of thermodynamics. 1 Introduction It has been observed since a long time (see e.g. [30], [4]) that energy, as the ability to do work, plays an important role in our civilization. Nowadays, more and more people realize that complex systems such as ecological networks, social organizations, economic systems are energy driven systems.
    [Show full text]
  • Boltzmann Statistics As Founding Principle of Microbial Growth Elie Desmond-Le Quéméner, Théodore Bouchez
    Boltzmann statistics as founding principle of microbial growth Elie Desmond-Le Quéméner, Théodore Bouchez To cite this version: Elie Desmond-Le Quéméner, Théodore Bouchez. Boltzmann statistics as founding principle of micro- bial growth. 2013. hal-00825781v1 HAL Id: hal-00825781 https://hal.archives-ouvertes.fr/hal-00825781v1 Preprint submitted on 24 May 2013 (v1), last revised 26 Aug 2015 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Boltzmann statistics as founding principle of 2 microbial growth 3 4 5 6 Authors: Elie Desmond-Le Quéméner et Théodore Bouchez* 7 8 Affiliation : Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France 9 * corresponding author : [email protected] 10 11 12 13 Keywords: microbial division, growth rate, exergy, Gibbs energy, statistical physics, flux-force 14 relationship. 15 16 17 SUMMARY: Microbes are the most abundant living forms on earth and major contributors to the 18 biogeochemical cycles. However, our ability to model their dynamics only relies on empirical laws, 19 fundamentally restricting our understanding and predictive capacity in many environmental systems. 20 Preeminent physicists such as Schrödinger and Prigogine have introduced a thermodynamic 21 interpretation of life, paving the way for a quantitative theory.
    [Show full text]
  • Entropy in the Critical Zone
    Supplementary Information 1. Thermodynamic Entropy 1.1. Mass and Energy Budget for an Open System in Non-Thermal Equilibrium For open large systems experiencing non-thermal equilibrium it is possible to define an elemental volume where we can assume local equilibrium. Both intensive and extensive variables can be defined at this local domain. On the one hand, the intensive quantities such as temperature and pressure can be defined direclty. On the other hand, it is posible to define the extensive variables by implementing the respective densities. Therefore, the concept of elemental volumes and local equilibrium allows us to define all thermodynamics variables as a function of space and time [1]. The mass balance for a component k in an elemental volume is given by: dnk Ik X + r · − ν v = 0: (S1) dt M j;k j k j In this equation the nk refers to number of mols of component k per unit volume, I k refers to the flux of Mass component in [mass/area/time], Mk is the molar mass of component k in [ mol ], νj;k is the stoichiometric P coefficient for component k in the reaction j, and vj is the velocity of the reaction j. The term νj;kξj j is a net sink (or source) term of nk over all possible reactions where k is involved within the elemental volume. Note, that total mass is conserved, and the sink (or source) term of a component k implies that there is a source (or sink) in other components. The energy balance equation for an elemental volume is given by: de + r · J = 0 (S2) dt e where Je is the total flux of energy in the elemental volume.
    [Show full text]
  • How the Second Law of Thermodynamics Has Informed Ecosystem Ecology Through Its History Downloaded From
    Overview Articles How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History Downloaded from ERIC J. CHAPMAN, DANIEL L. CHILDERS, AND JOSEPH J. VALLINO Many attempts have been made to develop a general principle governing how systems develop and organize in ecology. We reviewed the http://bioscience.oxfordjournals.org/ historical developments that led to the conceptualization of several goal-oriented principles in ecosystem ecology. We focused on two prominent principles—the maximum power principle (MPP) and the maximum entropy production principle (MEPP)—and the literature that applies to both. Although these principles have conceptual overlap, we found considerable differences in their historical development, the disciplines that apply these principles, and their adoption in the literature. These principles were more similar than dissimilar, and the maximization of power in ecosystems occurs with maximum entropy production. These principles have great potential to explain how systems develop, organize, and function, but there are no widely agreed-on theoretical derivations for the MEPP and MPP, hindering their broader use in ecological research. We end with recommendations for how ecosystems-level studies may better use these principles. Keywords: MPP, MEPP, second law of thermodynamics, ecosystem ecology, Howard T. Odum at University of Chicago on January 15, 2016 any theoretical frameworks have been proposed links between these principles, as well as the possible reasons M to unify the fundamental concepts of systems organi- that they have gained surprisingly little traction with ecosys- zation and development. For example, there are hypotheses tem ecologists writ large and how that can be changed. that systems organization involves maximizing power (Lotka Originally presented by Lotka (1922a) in the 1920s, the 1922), maximizing entropy production (Paltridge 1975), and MPP states that systems develop to increase the total flow of maximizing embodied energy, or emergy (Odum HT 1988).
    [Show full text]
  • Life As a Manifestation of the Second Law of Thermodynamics
    LIFE AS A MANIFESTATION OF THE SECOND LAW OF THERMODYNAMICS ERIC D. SCHNEIDER National Ocean Service National Oceanic and Atmospheric Administration Washington, D.C., U.S.A. JAMES J. KAY Environment and Resource Studies University of Waterloo Waterloo, Ontario, Canada, N2L 3G1 [email protected] www.fes.uwaterloo.ca/u/jjkay/ ABSTRACT We examine the thermodynamic evolution of various evolving systems, from primitive physical systems to complex living systems, and conclude that they involve similar processes which are phenomenological manifestations of the second law of thermodynamics. We take the reformulated second law of thermodynamics of Hatsopoulos and Keenan and Kestin and extend it to nonequilibrium regions, where nonequilibrium is described in terms of gradients maintaining systems at some distance away from equilibrium. The reformulated second law suggests that as systems are moved away from equilibrium they will take advantage of all available means to resist externally applied gradients. When highly ordered complex systems emerge, they develop and grow at the expense of increasing the disorder at higher levels in the system's hierarchy. We note that this behaviour appears universally in physical and chemical systems. We present a paradigm which provides for a thermodynamically consistent explanation of why there is life, including the origin of life, biological growth, the development of ecosystems, and patterns of biological evolution observed in the fossil record. We illustrate the use of this paradigm through a discussion of ecosystem development . We argue that as ecosystems grow and develop, they should increase their total dissipation, develop more complex structures with more energy flow, increase their cycling activity, develop greater diversity and generate more hierarchical levels, all to abet energy degradation.
    [Show full text]
  • Emergy, Empower and the Eco-Exergy to Empower Ratio: a Reconciliation of H.T
    S. Bastianoni, International Journal of Ecodynamics. Vol. 1, No. 3 (2006) 226–235 EMERGY, EMPOWER AND THE ECO-EXERGY TO EMPOWER RATIO: A RECONCILIATION OF H.T. ODUM WITH PRIGOGINE? S. BASTIANONI Department of Chemical and Biosystems Sciences, University of Siena, Italy. ABSTRACT This paper presents the theory behind and the possible uses of the ratio of eco-exergy to empower. This orientor originates from the comparison of S.E. Jørgensen’s and H.T. Odum’s approaches to ecosystems theory. The former proposed as orientor the maximization of stored eco-exergy, that is the extension of the thermodynamic function exergy of ecosystems. The latter, the maximization of empower, is the flow of emergy (solar energy directly and indirectly required to obtain a certain item). The use of the ratio of eco-exergy to empower enables one to understand what is the order that the two maximization criteria follow during the evolution of an ecosystem. A possible analogy between the maximization of eco-exergy to empower ratio and the minimization of specific dissipation is discussed. The use of this orientor for the comparison of the same system at different times or of different systems provides a possible holistic measure of the effects of the use of a certain pattern of inputs in a system. This can help comparisons within the framework of life cycle assessment. Keywords: eco-exergy, eco-exergy to empower ratio, emergy, orientors. 1 INTRODUCTION Ecosystem theories, at least the thermodynamically oriented ones, can be seen as having four points of origin (with some overlapping): on one hand, we have Lotka’s maximum power principle [1] and information theory [2].
    [Show full text]
  • Systems Ecology, Energy Networks, and a Path to Sustainability
    Brian D. Fath, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 1–15 SYSTEMS ECOLOGY, ENERGY NETWORKS, AND A PATH TO SUSTAINABILITY BRIAN D. FATH Department of Biological Sciences, Towson University, Towson, MD 21252, USA. Advanced Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria. ABSTRACT One of the great advances of the 20th century was the rise of a formal systems science and systems thinking. This progress influenced ecology in ways that provided new insight to the structure and func- tion of ecosystems using tools from thermodynamics, networks, information theory, and more. We have been able to increase our understanding of how ecosystems function in terms of using avail- able energy to create complex structures to move away from thermodynamic equilibrium and how these self- organizing structures adapt to changing situations. Ecological goal functions can measure this orientation of ecosystem growth and development (EGD). This presentation addresses how these metrics attuned for ecosystems have relevant application in socio-economic systems. In particular, energy network science is a new paradigm that draws from thermodynamics, information theory, and network analysis to assess the organization, patterns, and dynamics of diverse systems such as ecosys- tems, financial systems, and urban metabolism. Our understanding of sustainable systems is informed by knowing how ecological and other far-from-thermodynamic equilibrium systems create, maintain, and sustain their functional activities. This approach builds from the seminal efforts of systems think- ers such as Gregory Bateson, Buzz Holling, Jane Jacobs, Sven Jørgensen, Donella Meadows, Jacob Moreno, Bernard Patten, Joseph Tainter, Robert Ulanowicz, and Ilya Prigogine.
    [Show full text]
  • Energy-, Exergy- and Emergy Analysis of Biomass Production
    SLD-nf- cLcld— ENERGY-, EXERGY- AND EMERGY ANALYSIS OF BIOMASS PRODUCTION Karolina Hovelius DismwnoN of im document » Institutionen for lantbruksteknik Rapport 222 Report Swedish University of Agricultural Sciences Uppsala 1997 Department of Agricultural Engineering ISSN 0283-0086 ISBN SLU-LT-R-222-SE DISCLAIMER Portions of this document may be Illegible in electronic image products. Images are produced from the best available original document SUMMARY An important aspect that must be evaluated concerning biofuels is their efficiency in converting solar energy into biomass. This evaluation is important in reaching the right decisions about which crops are to be preferred in any specific situation. Another important factor is whether or not the cultivation is profitable from an energy point of view, i. e. if we get as much energy out of the cultivation, such as salix chips, as we invest in it, e. g. as fuels, nutrients, etc. This type of evaluation may be done from different viewpoints and in this report three different methods have been used, energy-, exergy-, and EMERGY analyses. The energy and the exergy methods are both based upon the laws of thermodynamics. The energy analysis has its roots in the first law of thermodynamics and therefore only concerns the amount of energy put into a product throughout the manufacturing but not how physical valuable the used energy was. The exergy analysis is based upon both the first and the second laws of thermodynamics, which results in not only the amount of energy used but also the energy quality is taken into consideration. EMERGY analysis, in contrast, is based upon H T Odum’s theory and has its roots in systems ecology and the maximum power principle.
    [Show full text]
  • Howard T. Odum's Contribution to the Laws of Energy
    Ecological Modelling 178 (2004) 121–125 Short communication Howard T. Odum’s contribution to the laws of energy David Rogers Tilley∗ Department of Biological Resources Engineering, University of Maryland, College Park, MD 20742, USA 1. Introduction 2. 4th Law: self-organization for maximum empower H.T. Odum’s life-long search for the energy basis of general systems principles culminated in propos- It is evident from H.T.’s Ph.D. dissertation (Odum, als for three new energy laws, which if accepted, 1950, pp. 6–8), that his earliest thinking on what be- would double the number currently recognized by came his proposal for a fourth law was influenced by engineers and scientists. I review the evolution of Lotka’s (1922a,b) writings on system energetics and his thinking on proposals for a 4th (self-organization stability, and Charles Darwin’s theory of natural selec- for maximum empower), 5th (energy transforma- tion. Later H.T. pointed out that Darwin’s evolutionary tion hierarchy) and 6th (coupling of biogeochemical law (i.e., natural selection) was developed into a gen- cycles to energy transformation hierarchies) law of eral energy law by Lotka when he said “that maximiza- energy. tion of power for useful purposes was the criterion for During his lifetime investigation of ecological sys- natural selection” (Odum, 1971). H.T. reformulated tems, H.T. Odum sought to generalize his and other’s Lotka’s principle as the “maximum power principle,” observations about how ecosystems selected their stating it as “systems prevail that develop designs network designs to match their structure and level of that maximize the flow of useful energy ..
    [Show full text]
  • Measuring Regenerative Economics: 2 10 Principles and Measures Undergirding Systemic Economic Health 3 4 Brian D
    1 Measuring Regenerative Economics: 2 10 principles and measures undergirding systemic economic health 3 4 Brian D. Fath1,2,,3*, Daniel A. Fiscus3,4, Sally J. Goerner3, Anamaria Berea3,5, 5 Robert E. Ulanowicz3,6, 6 7 1. Department of Biological Sciences, Towson University, Towson, MD, USA 8 2. Advanced Systems Analysis Program, International Institute for Applied System Analysis, Laxenburg, Austria 9 3. Research Alliance for Regenerative Economics (RARE) 10 4. Western Maryland Food Council, Cumberland, MD, USA 11 5. University of Central Florida, Orlando, FL, USA 12 6. University of Maryland (Emeritus), Solomons, MD, USA and University of Florida, Gainesville, FL, USA 13 14 * corresponding author: BD Fath: [email protected], 410-704-2535 15 16 17 Abstract 18 Applying network science concepts and methods to economic systems is not a new idea. In the 19 last few decades, however, advances in non-equilibrium thermodynamics (i.e., self-organizing, 20 open, dissipative, far-from-equilibrium systems), and nonlinear dynamics, network science, 21 information theory, and other mathematical approaches to complex systems have produced a 22 new set of concepts and methods, which are powerful for understanding and predicting behavior 23 in socio-economic systems. In several previous papers, for example, we used research from the 24 new Energy Network Science (ENS) to show how and why systemic ecological and economic 25 health requires a balance of efficiency and resilience be maintained within a particular a 26 “window of vitality”. The current paper outlines the logic behind 10 principles of systemic, 27 socio-economic health and the quantitative measures that go with them.
    [Show full text]
  • Our Myth from Science (The Second Law and Natural Selection) S.N
    Becoming, Being And Passing: Our Myth From Science (the Second Law and Natural Selection) S.N. Salthe, July, 2002 ABSTRACT Our myth from science has three prongs -- to provide answers to: (1a), why is there anything at all? (1b), Why are there so many kinds of systems?; (2), Why do systems not last once they exist?, and (3), Why are systems just the way they are and not otherwise? The answers to (1) come from cosmology and physics (thermodynamics), the answer to (2) comes from a materialist interpretation of information theory, while the answer to (3) comes from evolutionary biology. These answers are: (1a) because the universal expansion following the Big Bang has been accelerating so fast that the universe could not remain in equilibrium. Matter and gravitation are aspects (and signs) of disequilibrium. Matter is embodied energy, a condensed form of energy signaling extreme thermodynamic disequilibrium; (1b) because the universe uses material configurations to dissipate energy gradients; the more different configurations, and systems, there are, the more different kinds of gradients can be dissipated in the interest of equilibration. (2) because information accumulates in all dynamic material systems, leading ultimately to information overload, leading in turn to instability. (3) because only configurations that conform to others, or relate mutually, are stable enough to persist in the face of the overwhelming tendency of things to fall apart via (1b). INTRODUCTION All societies and cultures have creation myths, often entailing morality. Myths are stories that are believed, so that, for example, if a biologist believes that natural selection has produced all apparent adaptations, then natural selection is here functioning as a myth, rather than as a scientific hypothesis requiring testing.
    [Show full text]