Rethinking Evolution, Entropy and Economics: a Triadic Conceptual

Total Page:16

File Type:pdf, Size:1020Kb

Rethinking Evolution, Entropy and Economics: a Triadic Conceptual A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Herrmann-Pillath, Carsten Working Paper Rethinking evolution, entropy and economics: A triadic conceptual framework for the maximum entropy principle as applied to the growth of knowledge Frankfurt School - Working Paper Series, No. 146 Provided in Cooperation with: Frankfurt School of Finance and Management Suggested Citation: Herrmann-Pillath, Carsten (2010) : Rethinking evolution, entropy and economics: A triadic conceptual framework for the maximum entropy principle as applied to the growth of knowledge, Frankfurt School - Working Paper Series, No. 146, Frankfurt School of Finance & Management, Frankfurt a. M. This Version is available at: http://hdl.handle.net/10419/37133 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Frankfurt School – Working Paper Series No. 146 Rethinking Evolution, Entropy and Economics: A triadic conceptual framework for the Maximum Entropy Principle as applied to the growth of knowledge by Carsten Herrmann-Pillath Sonnemannstr. 9 – 11 60314 Frankfurt am Main, Germany Phone: +49 (0) 69 154 008 0 Fax: +49 (0) 69 154 008 728 Internet: www.frankfurt-school.de Rethinking Evolution, Entropy and Economics Abstract Recently, the maximum entropy principle has been applied to explain the evolution of com- plex non-equilibrium systems, such as the Earth system. I argue that it can also be fruitfully deployed to reconsider the classical treatment of entropy in economics by Georgescu-Roegen, if the growth of knowledge is seen as a physical process. Relying on central categories of Peirce’s theory of signs, I follow the lines of a naturalistic evolutionary epistemology. In this framework, the three principles of Maximum Entropy (Jaynes), Maximum Power (Lotka) and Maximum Entropy Production can be arranged in a way such that evolution can be conceived as a process that manifests the physical tendency to maximize information generation and information capacity. This implies that the growth of knowledge is the dual of the process of entropy production. This theory matches with recent empirical research showing that eco- nomic growth can be tracked by measures of the throughput of useful work, mediated by the thermodynamic efficiency of the conversion of exergy into useful work. Key words: Peirce, Georgescu-Roegen, maximum entropy, maximum power, natural selec- tion, semeiosis, physical inference devices, economic growth, useful work JEL classification: B52, D80, Q57 ISSN: 14369753 Contact: Prof. Dr. Carsten Herrmann-Pillath Academic Director, East-West Centre for Business Studies and Cultural Science Frankfurt School of Finance and Management Sonnemannstraße 9-11 60314 Frankfurt am Main, Germany Email [email protected] Submitted to the Annual Meeting of the Ausschuß für Evolutorische Ökonomik at the Verein für So- cialpolitik , Linz, Austria, July 1-3, 2010 Frankfurt School of Finance & Management 2 Working Paper No. 146 Rethinking Evolution, Entropy and Economics Content 1 Peirce: A neglected source of inspiration for evolutionary economics .................................4 2 Triadism as a unifying conceptual perspective......................................................................5 3 The naturalization of the semeiotic triad ...............................................................................7 4 Semeiotic triads as inference devices ....................................................................................9 5 Autocatalytic cycles as archetypes of inference devices .....................................................13 6 The energetics of semeiosis .................................................................................................16 7 Implications for economic analysis .....................................................................................22 8 Conclusion ...........................................................................................................................25 References ................................................................................................................................26 Frankfurt School of Finance & Management Working Paper No. 146 3 Rethinking Evolution, Entropy and Economics 1 Peirce: A neglected source of inspiration for evolutionary economics Charles Sanders Peirce was one of the most original and influential American thinkers at the turn from the 19th to the 20th century. He co-created American pragmatism and contributed to many different fields, such as logic, mathematics and metaphysics. His thinking was shaped by his profession as a learned scientist (chemistry and geodesy), thus differing in background from most academic philosophers of his times. His philosophy was part and par- cel of the general intellectual scenery, which also fostered the rise of institutionalism in eco- nomics and the creation of the first vintage of evolutionary economics. Yet, his work is strangely neglected in both the history of thought in economics and in modern treatments of evolutionary economics, mainly relegated to a few hints at his impact on the general intellec- tual climate, and on the role of his methodology for institutionalist economists (e.g. Hodgson 1999). References to Peirce mostly concentrate on Peirce’s methodological viewpoints and his philosophy of science, which is seen to be shared by influential institutional economists such as Commons and Ayres (Liebhafsky 1993). However, even in this regard John Dewey certainly is regarded to be the more influential thinker. This relative neglect is also condi- tioned by the sparseness of explicit references to his work by the early evolutionary econo- mists themselves, such as Veblen. But Peirce was also a pundit of capitalism, especially of what he perceived as an undue emphasis on competition. His metaphysical notion of ‘agapeism’ introduced a strong role of altruism into his view of evolution and assigned an almost cosmic role to universal love. This attitude might have distracted even institutional economists from a closer inspection of his other ideas. In this paper, I wish to explore a Peircian perspective on evolutionary economics. My motiva- tion is not to provide an exegesis of Peirce’s voluminous works from the viewpoint of eco- nomics. With ‘Peircian’ I refer to certain central elements in Peirce’s thought which I believe can be of crucial importance to further push the case of evolutionary economics. That is, my reception is selective, and in places even contradicts some more specific opinions of Peirce himself. So, ‘Peircian’ actually refers to extensions and modifications of the original thought. The elements that I specifically consider are: • the theory of signs • the notion of fundamental randomness • the concept of final causality • and naturalism in the theory of mind. I think that these ideas can help to clarify one fundamental issue in evolutionary economics (Metcalfe 2001): How can we conceive of economic evolution as growth of knowledge? In a Peircian view, we can develop a naturalistic conception of knowledge, which means, ulti- mately, that ‘information’ is conceived as a physical category. Based on this, we will be able to establish an unexpected connection between the Peircian approach and a newly emerging field in the analysis of non-equilibrium dynamical systems, namely the Maximum Entropy approach (for a most recent survey, see Kleidon et al. 2010). I will argue that the growth of Frankfurt School of Finance & Management 4 Working Paper No. 146 Rethinking Evolution, Entropy and Economics knowledge is a physical process, hence being subject to physical laws. From this follows, that economic evolution follows physical laws, especially the laws of thermodynamics. So, we travel from Peirce to Georgescu-Roegen. I will argue that a Peircian perspective can help to remedy some flaws in the earlier economic uses of the concept of entropy, especially in the sense of clarifying the relation between information-theoretic and physical uses of the term (thus pursuing a line of thinking originating with Ayres 1994). The backbone of the entire argument is a naturalistic interpretation of evolutionary epistemology, which can be built on Peirce’s theory of signs. I will conclude in demonstrating a fundamental consequence for eco- nomic analysis, which is also of far-reaching practical importance: If the growth of knowl- edge is a physical phenomenon, we cannot argue that
Recommended publications
  • Emergy and Efficiency Analysis of Historical Bubbles
    Emergy Synthesis 10, Proceedings of the 10th Biennial Emergy Conference (2019) 29 Emergy and Efficiency Analysis of Historical Bubbles Mark P. A. Ciotola ABSTRACT Human societies comprise energy-consuming beings, who are vast consumers of energy, as both individual organisms and organized societies. Hence, in principle, it should be possible to utilize thermodynamic approaches to generate models of historical phenomena. The existing energy-related efficiency-discounted exponential growth (EDEG) framework for historical resource bubbles and dynasties involving a nonrenewable resource is presented. As EDEG is presented, its relationship to emergy-related concepts and approaches are explored and analyzed. Finally, future research possibilities for expanding the physical, closed system framework behind EDEG into the open system emergy framework. CONTEXT A framework for a science of human history has been developed from a physics perspective utilizing no-renewable quantities and approximating historical dynasties as closed systems. However, it is important to also consider open systems and better constrain models with better physical data. The emergy approach offers both capabilities. This paper will explore emergy concepts as related to past work. INTRODUCTION Following the success of physical scientists such as Isaac Newton with the law of universal gravitation, it had been the dream of some social scientists to develop a science of society and history. Coming at the top of a wave of scientific discoveries, and excited also by the political and social changes in the European world around him, he [father of Sociology August Comte] conceived the idea, which was shared in varying degrees by other thinkers of his time, that science might be unified and used in such a way as to harmonize the discords of human life (Marvin, 1936).
    [Show full text]
  • How Compressible Are Innovation Processes?
    1 How Compressible are Innovation Processes? Hamid Ghourchian, Arash Amini, Senior Member, IEEE, and Amin Gohari, Senior Member, IEEE Abstract The sparsity and compressibility of finite-dimensional signals are of great interest in fields such as compressed sensing. The notion of compressibility is also extended to infinite sequences of i.i.d. or ergodic random variables based on the observed error in their nonlinear k-term approximation. In this work, we use the entropy measure to study the compressibility of continuous-domain innovation processes (alternatively known as white noise). Specifically, we define such a measure as the entropy limit of the doubly quantized (time and amplitude) process. This provides a tool to compare the compressibility of various innovation processes. It also allows us to identify an analogue of the concept of “entropy dimension” which was originally defined by R´enyi for random variables. Particular attention is given to stable and impulsive Poisson innovation processes. Here, our results recognize Poisson innovations as the more compressible ones with an entropy measure far below that of stable innovations. While this result departs from the previous knowledge regarding the compressibility of fat-tailed distributions, our entropy measure ranks stable innovations according to their tail decay. Index Terms Compressibility, entropy, impulsive Poisson process, stable innovation, white L´evy noise. I. INTRODUCTION The compressible signal models have been extensively used to represent or approximate various types of data such as audio, image and video signals. The concept of compressibility has been separately studied in information theory and signal processing societies. In information theory, this concept is usually studied via the well-known entropy measure and its variants.
    [Show full text]
  • Chapter 3 3.4-2 the Compressibility Factor Equation of State
    Chapter 3 3.4-2 The Compressibility Factor Equation of State The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio pv Z = (3.4-1) RT If the gas behaves ideally Z = 1. The extent to which Z differs from 1 is a measure of the extent to which the gas is behaving nonideally. The compressibility can be determined from experimental data where Z is plotted versus a dimensionless reduced pressure pR and reduced temperature TR, defined as pR = p/pc and TR = T/Tc In these expressions, pc and Tc denote the critical pressure and temperature, respectively. A generalized compressibility chart of the form Z = f(pR, TR) is shown in Figure 3.4-1 for 10 different gases. The solid lines represent the best curves fitted to the data. Figure 3.4-1 Generalized compressibility chart for various gases10. It can be seen from Figure 3.4-1 that the value of Z tends to unity for all temperatures as pressure approach zero and Z also approaches unity for all pressure at very high temperature. If the p, v, and T data are available in table format or computer software then you should not use the generalized compressibility chart to evaluate p, v, and T since using Z is just another approximation to the real data. 10 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 112 3-19 Example 3.4-2 ---------------------------------------------------------------------------------- A closed, rigid tank filled with water vapor, initially at 20 MPa, 520oC, is cooled until its temperature reaches 400oC.
    [Show full text]
  • A Thermodynamic Theory of Economics
    ________________________________________________________________________________________________ A Thermodynamic Theory of Economics Final Post Review Version ________________________________________________________________________________________________ John Bryant VOCAT International Ltd, 10 Falconers Field, Harpenden, AL5 3ES, United Kingdom. E-mail: [email protected] Abstract: An analogy between thermodynamic and economic theories and processes is developed further, following a previous paper published by the author in 1982. Economic equivalents are set out concerning the ideal gas equation, the gas constant, pressure, temperature, entropy, work done, specific heat and the 1st and 2nd Laws of Thermodynamics. The law of diminishing marginal utility was derived from thermodynamic first principles. Conditions are set out concerning the relationship of economic processes to entropic gain. A link between the Le Chatelier principle and economic processes is developed, culminating in a derivation of an equation similar in format to that of Cobb Douglas production function, but with an equilibrium constant and a disequilibrium function added to it. A trade cycle is constructed, utilising thermodynamic processes, and equations are derived for cycle efficiency, growth and entropy gain. A thermodynamic model of a money system is set out, and an attempt is made to relate interest rates, the rate of return, money demand and the velocity of circulation to entropy gain. Aspects concerning the measurement of economic value in thermodynamic terms are discussed. Keywords: Thermodynamics, economics, Le Chatelier, entropy, utility, money, equilibrium, value, energy. Publisher/Journal: This paper is the final post review version of a paper submitted to the International Journal of Exergy, published by Inderscience Publishers. Reference: Bryant, J. (2007) ‘A thermodynamic theory of economics’, Int. J. Exergy, Vol 4, No.
    [Show full text]
  • Real Gases – As Opposed to a Perfect Or Ideal Gas – Exhibit Properties That Cannot Be Explained Entirely Using the Ideal Gas Law
    Basic principle II Second class Dr. Arkan Jasim Hadi 1. Real gas Real gases – as opposed to a perfect or ideal gas – exhibit properties that cannot be explained entirely using the ideal gas law. To understand the behavior of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects; Issues with molecular dissociation and elementary reactions with variable composition. Critical state and Reduced conditions Critical point: The point at highest temp. (Tc) and Pressure (Pc) at which a pure chemical species can exist in vapour/liquid equilibrium. The point critical is the point at which the liquid and vapour phases are not distinguishable; because of the liquid and vapour having same properties. Reduced properties of a fluid are a set of state variables normalized by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states The reduced pressure is defined as its actual pressure divided by its critical pressure : The reduced temperature of a fluid is its actual temperature, divided by its critical temperature: The reduced specific volume ") of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature: This property is useful when the specific volume and either temperature or pressure are known, in which case the missing third property can be computed directly. 1 Basic principle II Second class Dr. Arkan Jasim Hadi In Kay's method, pseudocritical values for mixtures of gases are calculated on the assumption that each component in the mixture contributes to the pseudocritical value in the same proportion as the mol fraction of that component in the gas.
    [Show full text]
  • Thermodynamics As a Substantive and Formal Theory for the Analysis of Economic and Biological Systems
    Thermodynamics as a Substantive and Formal Theory for the Analysis of Economic and Biological Systems The research presented in this thesis was carried out at the Department of Theoretical Life Sciences, Vrije Universiteit Amsterdam, The Netherlands and at the Environment and Energy Section, Instituto Superior T´ecnico, Lisbon, Portugal. VRIJE UNIVERSITEIT THERMODYNAMICS AS A SUBSTANTIVE AND FORMAL THEORY FOR THE ANALYSIS OF ECONOMIC AND BIOLOGICAL SYSTEMS ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Aard- en Levenswetenschappen op dinsdag 6 februari 2007 om 10.00 uur in de aula van de Instituto Superior T´ecnico Av. Rovisco Pais, n◦1 1049-001 Lisboa door Taniaˆ Alexandra dos Santos Costa e Sousa geboren te Beira, Mozambique promotor: prof.dr. S.A.L.M. Kooijman Contents 1 Introduction 1 2 IsNeoclassicalEconomicsFormallyValid? 9 Published in Ecological Economics 58 (2006): 160-169 2.1 Introduction................................. 10 2.2 IstheFormalismofNeoclassicalEconomicswrong? . ...... 12 2.3 A Unified Formalism for Neoclassical Economics and Equilibrium Ther- modynamics................................. 14 2.4 DiscussingtheFormalism. 19 2.5 Conclusions................................. 21 3 Equilibrium Econophysics 29 Published in Physica A 371 (2006): 492-512 3.1 Introduction................................. 30 3.2 FundamentalEquationandtheEquilibriumState . ...... 31 3.3 DualityFormulation............................. 33 3.4 Reversible, Irreversible and Impossible Processes . .......... 35 3.5 Many-stepProcesses ............................ 36 3.6 LegendreTransforms ............................ 38 3.7 Elasticities.................................. 40 3.8 MaxwellRelations ............................. 43 3.9 StabilityConditions and the Le Chatelier Principle . ......... 45 3.10 EquationsofStateandIntegrability . ..... 47 3.11 FirstOrderPhaseTransitions .
    [Show full text]
  • Compressibility of the Fluid
    EPJ Web of Conferences 67, 02048 (2014) DOI: 10.1051/epjconf/20146702048 C Owned by the authors, published by EDP Sciences, 2014 Compressibility of the fluid Jana Jablonská1,a 1 Department of Hydromechanics and Hydraulic Equipment, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech republic Abstract. The presence of air in the liquid causes the dynamic system behaviour. When solve to issue of the dynamics we often meet problems of cavitation. Cavitation is an undesirable phenomenon, since it causes a disruption of the surrounding material and material destruction. Cavitation is accompanied by loud sound effects and reduces the efficiency of such pumps, etc. Therefore, it is desirable to model systems in which the cavitation might occur. A typical example is a solution of water hammer. 1 Introduction Fluid density after compression is given by m m In solving dynamics of hydraulic systems we often 0 4 4 (4) encounter the problem with cavitation. Cavitation is an V0 V 1 p 1 p undesirable phenomenon that we are trying to prevent. Cavitation depends on the liquid used in the hydraulic Thereof system. Liquids - hydraulic fluids are typical of its air content. The air in the fluid occurs in two forms - C p S D1 T (5) dissolved and undissolved. Dissolved air according to the 0 E K U literature [4] ia controled by Henry's law, its release is complex and difficult to describe action. If we consider the fluid flow with undissolved air it is a flow of mixture - water – air. 3 Determining the modulus of elasticity of liquid 2 Compressibility of the fluid The modulus of elasticity of water is generally in the literature determines the value of 2.1·109 Pa under normal Compressibility of the fluid is character to shrink in conditions, which corresponds to theory 1 (see Figure 3).
    [Show full text]
  • Self-Organization and the Maximum Empower Principle in the Framework of Max-Plus Algebra
    Self-organization and the Maximum Empower Principle in the Framework of max-plus Algebra Chams LAHLOU∗ and Laurent TRUFFETy Department of Automation, Production and Computer Sciences, IMT-A, Nantes, France August 31, 2021 Abstract Self-organization is a process where order of a whole system arises out of local interactions between small components of a system. Emergy, spelled with an 'm', defined as the amount of (solar) energy used to make a product or service, is becoming an important ecological indicator. The Maximum Empower Principle (MEP) was proposed as the fourth law of thermodynamics by the ecologist Odum in the 90's to explain observed self-organization of energy driven systems. But this principle suffers a lack of mathematical formulation due to an insufficiency of details about the underlying computation of empower (i.e. emergy per time). For empower computation in steady-state an axiomatic basis has been developed recently by Le Corre and the second author of this paper. In this axiomatic basis emergy is defined as a recursive max-plus linear function. Using this axiomatic basis and a correspondance between ecological theory and dynamic systems theory, we prove the MEP. In particular, we show that the empower computation in steady-state is equivalent to a combinatorial optimization problem. Keywords: Emergy, Graph, Max-plus algebra, Sustainability, Fourth law of thermodynamics. 1 Introduction It has been observed since a long time (see e.g. [30], [4]) that energy, as the ability to do work, plays an important role in our civilization. Nowadays, more and more people realize that complex systems such as ecological networks, social organizations, economic systems are energy driven systems.
    [Show full text]
  • Boltzmann Statistics As Founding Principle of Microbial Growth Elie Desmond-Le Quéméner, Théodore Bouchez
    Boltzmann statistics as founding principle of microbial growth Elie Desmond-Le Quéméner, Théodore Bouchez To cite this version: Elie Desmond-Le Quéméner, Théodore Bouchez. Boltzmann statistics as founding principle of micro- bial growth. 2013. hal-00825781v1 HAL Id: hal-00825781 https://hal.archives-ouvertes.fr/hal-00825781v1 Preprint submitted on 24 May 2013 (v1), last revised 26 Aug 2015 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Boltzmann statistics as founding principle of 2 microbial growth 3 4 5 6 Authors: Elie Desmond-Le Quéméner et Théodore Bouchez* 7 8 Affiliation : Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France 9 * corresponding author : [email protected] 10 11 12 13 Keywords: microbial division, growth rate, exergy, Gibbs energy, statistical physics, flux-force 14 relationship. 15 16 17 SUMMARY: Microbes are the most abundant living forms on earth and major contributors to the 18 biogeochemical cycles. However, our ability to model their dynamics only relies on empirical laws, 19 fundamentally restricting our understanding and predictive capacity in many environmental systems. 20 Preeminent physicists such as Schrödinger and Prigogine have introduced a thermodynamic 21 interpretation of life, paving the way for a quantitative theory.
    [Show full text]
  • Thermodynamic Properties of Molecular Oxygen
    NATIONAL BUREAU OF STANDARDS REPORT 2611 THERMODYNAMIC PROPERTIES OF MOLECULAR OXYGEN tv Harold ¥, Woolley Themodynamics Section Division of Heat and Power U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS U. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astin, Director THE NATIONAL BUREAU OF STANDARDS The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in special- ized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report. Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry. Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage. Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering. Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radio- logical Equipment. Atomic Energy Commission Instruments Branch. Chemistry. Organic Coatings. Surface Cheipistry. Organic Chemistry.
    [Show full text]
  • Entropy and Compressibility of Symbol Sequences
    PhysComp96 Entropy and Compressibility of Symbol Sequences Full paper Draft, February 23, 1997 Werner Ebeling [email protected] Thorsten PÄoschel [email protected] Alexander Neiman [email protected] Institute of Physics, Humboldt University Invalidenstr. 110, D-10115 Berlin, Germany The purpose of this paper is to investigate long-range correlations in symbol sequences using meth- ods of statistical physics and nonlinear dynamics. Beside the principal interest in the analysis of correlations and fluctuations comprising many letters, our main aim is related here to the problem of sequence compression. In spite of the great progress in this ¯eld achieved in the work of Shannon, Fano, Hu®man, Lempel, Ziv and others [1] many questions still remain open. In particular one must note that since the basic work by Lempel and Ziv the improvement of the standard compression algorithms is rather slow not exceeding a few percent per decade. One the other hand several experts expressed the idee that the long range correlations, which clearly exist in texts, computer programs etc. are not su±ciently taken into account by the standard algorithms [1]. Thus, our interest in compressibility is twofold: (i) We would like to explore how far compressibility is able to measure correlations. In particular we apply the standard algorithms to model sequences with known correlations such as, for instance, repeat sequences and symbolic sequences generated by maps. (ii) We aim to detect correlations which are not yet exploited in the standard compression algorithms and belong therefore to potential reservoirs for compression algorithms.
    [Show full text]
  • Ideal and Real Gases 1 the Ideal Gas Law 2 Virial Equations
    Ideal and Real Gases Ramu Ramachandran 1 The ideal gas law The ideal gas law can be derived from the two empirical gas laws, namely, Boyle’s law, pV = k1, at constant T, (1) and Charles’ law, V = k2T, at constant p, (2) where k1 and k2 are constants. From Eq. (1) and (2), we may assume that V is a function of p and T. Therefore, µ ¶ µ ¶ ∂V ∂V dV (p, T )= dp + dT. (3) ∂p T ∂T p 2 Substituting from above, we get (∂V/∂p)T = k1/p = V/p and (∂V/∂T )p = k2 = V/T.Thus, − − V V dV = dP + dT, or − p T dV dp dT + = . V p T Integrating this equation, we get ln V +lnp =lnT + c (4) where c is the constant of integration. Assigning (quite arbitrarily) ec = R,weget ln V +lnp =lnT +lnR,or pV = RT. (5) The constant R is, of course, the gas constant, whose value has been determined experimentally. 2 Virial equations The compressibility factor of a gas Z is defined as Z = pV/(nRT )=pVm/(RT), where the subscript on V indicates that this is a molar quantity. Obviously, for an ideal gas, Z =1always. For real gases, additional corrections have to be introduced. Virial equations are expressions in which such corrections can be systematically incorporated. For example, B(T ) C(T ) Z =1+ + 2 + ... (6) Vm Vm 1 We may substitute for Vm in terms of the ideal gas law and get an expression in terms of pressure, which is often more convenient to use: B C Z =1+ p + p2 + ...
    [Show full text]