Vonneumann Architecture;MIPS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mipspro C++ Programmer's Guide
MIPSproTM C++ Programmer’s Guide 007–0704–150 CONTRIBUTORS Rewritten in 2002 by Jean Wilson with engineering support from John Wilkinson and editing support from Susan Wilkening. COPYRIGHT Copyright © 1995, 1999, 2002 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, IRIX, O2, Octane, and Origin are registered trademarks and OpenMP and ProDev are trademarks of Silicon Graphics, Inc. in the United States and/or other countries worldwide. MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, R2000, R3000, R4000, R4400, R4600, R5000, and R8000 are registered or unregistered trademarks and MIPSpro, R10000, R12000, R1400 are trademarks of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. Portions of this publication may have been derived from the OpenMP Language Application Program Interface Specification. -
Microprocessors History of Computing Nouf Assaid
MICROPROCESSORS HISTORY OF COMPUTING NOUF ASSAID 1 Table of Contents Introduction 2 Brief History 2 Microprocessors 7 Instruction Set Architectures 8 Von Neumann Machine 9 Microprocessor Design 12 Superscalar 13 RISC 16 CISC 20 VLIW 23 Multiprocessor 24 Future Trends in Microprocessor Design 25 2 Introduction If we take a look around us, we would be sure to find a device that uses a microprocessor in some form or the other. Microprocessors have become a part of our daily lives and it would be difficult to imagine life without them today. From digital wrist watches, to pocket calculators, from microwaves, to cars, toys, security systems, navigation, to credit cards, microprocessors are ubiquitous. All this has been made possible by remarkable developments in semiconductor technology enabling in the last 30 years, enabling the implementation of ideas that were previously beyond the average computer architect’s grasp. In this paper, we discuss the various microprocessor technologies, starting with a brief history of computing. This is followed by an in-depth look at processor architecture, design philosophies, current design trends, RISC processors and CISC processors. Finally we discuss trends and directions in microprocessor design. Brief Historical Overview Mechanical Computers A French engineer by the name of Blaise Pascal built the first working mechanical computer. This device was made completely from gears and was operated using hand cranks. This machine was capable of simple addition and subtraction, but a few years later, a German mathematician by the name of Leibniz made a similar machine that could multiply and divide as well. After about 150 years, a mathematician at Cambridge, Charles Babbage made his Difference Engine. -
MIPS IV Instruction Set
MIPS IV Instruction Set Revision 3.2 September, 1995 Charles Price MIPS Technologies, Inc. All Right Reserved RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and / or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor / manufacturer is MIPS Technologies, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. R2000, R3000, R6000, R4000, R4400, R4200, R8000, R4300 and R10000 are trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of MIPS Technologies, Inc. The information in this document is preliminary and subject to change without notice. MIPS Technologies, Inc. (MTI) reserves the right to change any portion of the product described herein to improve function or design. MTI does not assume liability arising out of the application or use of any product or circuit described herein. Information on MIPS products is available electronically: (a) Through the World Wide Web. Point your WWW client to: http://www.mips.com (b) Through ftp from the internet site “sgigate.sgi.com”. Login as “ftp” or “anonymous” and then cd to the directory “pub/doc”. (c) Through an automated FAX service: Inside the USA toll free: (800) 446-6477 (800-IGO-MIPS) Outside the USA: (415) 688-4321 (call from a FAX machine) MIPS Technologies, Inc. -
MIPS Architecture • MIPS (Microprocessor Without Interlocked Pipeline Stages) • MIPS Computer Systems Inc
Spring 2011 Prof. Hyesoon Kim MIPS Architecture • MIPS (Microprocessor without interlocked pipeline stages) • MIPS Computer Systems Inc. • Developed from Stanford • MIPS architecture usages • 1990’s – R2000, R3000, R4000, Motorola 68000 family • Playstation, Playstation 2, Sony PSP handheld, Nintendo 64 console • Android • Shift to SOC http://en.wikipedia.org/wiki/MIPS_architecture • MIPS R4000 CPU core • Floating point and vector floating point co-processors • 3D-CG extended instruction sets • Graphics – 3D curved surface and other 3D functionality – Hardware clipping, compressed texture handling • R4300 (embedded version) – Nintendo-64 http://www.digitaltrends.com/gaming/sony- announces-playstation-portable-specs/ Not Yet out • Google TV: an Android-based software service that lets users switch between their TV content and Web applications such as Netflix and Amazon Video on Demand • GoogleTV : search capabilities. • High stream data? • Internet accesses? • Multi-threading, SMP design • High graphics processors • Several CODEC – Hardware vs. Software • Displaying frame buffer e.g) 1080p resolution: 1920 (H) x 1080 (V) color depth: 4 bytes/pixel 4*1920*1080 ~= 8.3MB 8.3MB * 60Hz=498MB/sec • Started from 32-bit • Later 64-bit • microMIPS: 16-bit compression version (similar to ARM thumb) • SIMD additions-64 bit floating points • User Defined Instructions (UDIs) coprocessors • All self-modified code • Allow unaligned accesses http://www.spiritus-temporis.com/mips-architecture/ • 32 64-bit general purpose registers (GPRs) • A pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate operations (HI and LO) – HI—Multiply and Divide register higher result – LO—Multiply and Divide register lower result • a special-purpose program counter (PC), • A MIPS64 processor always produces a 64-bit result • 32 floating point registers (FPRs). -
2 MIPS Architecture 29
See MIPS® Run Second Edition ThisPageIntentionallyLeftBlank See MIPS® Run Second Edition Dominic Sweetman AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Morgan Kaufmann Publishers is an imprint of Elsevier Publisher: Denise E. M. Penrose Publishing Services Manager: George Morrison Senior Project Manager: Brandy Lilly Editorial Assistant: Kimberlee Honjo Cover Design: Alisa Andreola and Hannus Design Composition: diacriTech Technical Illustration: diacriTech Copyeditor: Denise Moore Proofreader: Katherine Antonsen Indexer: Steve Rath Interior Printer: The Maple-Vail Book Manufacturing Group, Inc. Cover Printer: Phoenix Color Morgan Kaufmann Publishers is an imprint of Elsevier. 500 Sansome Street, Suite 400, San Francisco, CA 94111 This book is printed on acid-free paper. © 2007 by Elsevier Inc. All rights reserved. MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS16, MIPS16e, MIPS-3D, MIPS32, MIPS64, 4K, 4KE, 4KEc, 4KSc, 4KSd, M4K, 5K, 20Kc, 24K, 24KE, 24Kf, 25Kf, 34K, R3000, R4000, R5000, R10000, CorExtend, MDMX, PDtrace and SmartMIPS are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries, and used herein under license from MIPS Technologies, Inc. MIPS, MIPS16, MIPS32, MIPS64, MIPS-3D and SmartMIPS, among others, are registered in the U.S. Patent and Trademark Office. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Designations used by companies to distinguish their products are often claimed as trademarks or registered trade- marks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital letters. -
Pluggable Interface Relays CR-M Miniature Relays
Data sheet Pluggable interface relays CR-M Miniature relays Pluggable interface relays are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC (programmable logic controller), PC or field bus systems and the sensor / actuator level. They don’t use additional internal protective circuits and thus are overload-proof against short-time variations like current or voltage peaks. 2CDC 291 002 S0015 Characteristics Approvals – Standard miniature relays with mechanical status indication H ANSI/UL 508, CAN/CSA C22.2 No.14 – 13 different rated control supply voltages: F CAN/CSA C22.2 No.14 DC versions: 12 V, 24 V, 48 V, 60 V, 110 V, 125 V, 220 V J VDE (except 125 V DC devices) AC versions: 24 V, 48 V, 60 V, 110 V, 120 V, 230 V EAC – Output: 2 c/o (SPDT) contacts (12 A), 3 c/o (SPDT) R contacts (10 A) or 4 c/o (SPDT) contacts (6 A) P Lloyds Register (only devices with 4 c/o (SPDT) – Available with or without LED contacts) CCC – 4 c/o (SPDT) contact version optionally equipped with E gold contacts, LED and free wheeling diode L RMRS (except 60 V and 125 V devices) – Integrated test button for manual actuation and locking of output contacts (DC coil = blue, AC coil = orange) that Marks can be removed if necessary a CE – Cadmium-free contact material – Suited for logical and standard sockets – Width on socket: 27 mm (1.063 in) – Pluggable function modules: reverse polarity protection/ free wheeling diode, LED indication, RC elements, overvoltage protection Order data Packing unit = 10 pieces -
IDT79R4600 and IDT79R4700 RISC Processor Hardware User's Manual
IDT79R4600™ and IDT79R4700™ RISC Processor Hardware User’s Manual Revision 2.0 April 1995 Integrated Device Technology, Inc. Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any respon- sibility for use of any circuitry described other than the circuitry embodied in an IDT product. ITD makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights, or other rights of Integrated Device Technology, Inc. LIFE SUPPORT POLICY Integrated Device Technology’s products are not authorized for use as critical components in life sup- port devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT. 1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accor- dance with instructions for use provided in the labeling, can be reasonably expected to result in a sig- nificant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. -
RISC-V Geneology
RISC-V Geneology Tony Chen David A. Patterson Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-6 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-6.html January 24, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Introduction RISC-V is an open instruction set designed along RISC principles developed originally at UC Berkeley1 and is now set to become an open industry standard under the governance of the RISC-V Foundation (www.riscv.org). Since the instruction set architecture (ISA) is unrestricted, organizations can share implementations as well as open source compilers and operating systems. Designed for use in custom systems on a chip, RISC-V consists of a base set of instructions called RV32I along with optional extensions for multiply and divide (RV32M), atomic operations (RV32A), single-precision floating point (RV32F), and double-precision floating point (RV32D). The base and these four extensions are collectively called RV32G. This report discusses the historical precedents of RV32G. We look at 18 prior instruction set architectures, chosen primarily from earlier UC Berkeley RISC architectures and major proprietary RISC instruction sets. Among the 122 instructions in RV32G: ● 6 instructions do not have precedents among the selected instruction sets, ● 98 instructions of the 116 with precedents appear in at least three different instruction sets. -
C++ Programmer's Guide
C++ Programmer’s Guide Document Number 007–0704–130 St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica. Copyright © 1995, 1999 Silicon Graphics, Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. LIMITED AND RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351. Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, SUPERCLUSTER, UNICOS, X-MP EA, and UNICOS/mk are federally registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
Electronic Products and Relays Selection Table Interface Relays CR-Range and R600 / R500 Range Pluggable Interface Relays
Electronic Products and Relays Selection Table Interface Relays CR-Range and R600 / R500 Range Pluggable Interface Relays CR-M Range Order number number Order 1SVR 405 611 R4000 1SVR 405 611 R1000 1SVR 405 611 R6000 1SVR 405 611 R4200 1SVR 405 611 R8000 1SVR 405 611 R8200 1SVR 405 611 R9000 1SVR 405 611 R0000 1SVR 405 611 R5000 1SVR 405 611 R7000 1SVR 405 611 R2000 1SVR 405 611 R3000 1SVR 405 612 R4000 1SVR 405 612 R1000 1SVR 405 612 R6000 1SVR 405 612 R4200 1SVR 405 612 R8000 1SVR 405 612 R8200 1SVR 405 612 R9000 1SVR 405 612 R0000 1SVR 405 612 R5000 1SVR 405 612 R5200 1SVR 405 612 R7000 1SVR 405 612 R2000 1SVR 405 612 R3000 1SVR 405 613 R4000 1SVR 405 613 R1000 1SVR 405 613 R6000 1SVR 405 613 R4200 1SVR 405 613 R8000 1SVR 405 613 R8200 1SVR 405 613 R9000 1SVR 405 613 R0000 1SVR 405 613 R5000 1SVR 405 613 R7000 1SVR 405 613 R2000 1SVR 405 613 R3000 1SVR 405 611 R4100 1SVR 405 611 R1100 1SVR 405 611 R6100 1SVR 405 611 R4300 1SVR 405 611 R8100 1SVR 405 611 R8300 1SVR 405 611 R9100 1SVR 405 611 R0100 1SVR 405 611 R5100 1SVR 405 611 R7100 1SVR 405 611 R2100 1SVR 405 611 R3100 1SVR 405 612 R4100 1SVR 405 612 R1100 1SVR 405 612 R6100 1SVR 405 612 R4300 1SVR 405 612 R8100 1SVR 405 612 R8300 1SVR 405 612 R9100 1SVR 405 612 R0100 1SVR 405 612 R5100 1SVR 405 612 R7100 1SVR 405 612 R2100 1SVR 405 612 R3100 1SVR 405 613 R4100 1SVR 405 613 R1100 1SVR 405 613 R6100 1SVR 405 613 R4300 1SVR 405 613 R8100 1SVR 405 613 R8300 1SVR 405 613 R9100 1SVR 405 613 R0100 1SVR 405 613 R5100 1SVR 405 613 R7100 1SVR 405 613 R2100 1SVR 405 613 R3100 1SVR 405 614 R1100 -
Sony's Emotionally Charged Chip
VOLUME 13, NUMBER 5 APRIL 19, 1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Sony’s Emotionally Charged Chip Killer Floating-Point “Emotion Engine” To Power PlayStation 2000 by Keith Diefendorff rate of two million units per month, making it the most suc- cessful single product (in units) Sony has ever built. While Intel and the PC industry stumble around in Although SCE has cornered more than 60% of the search of some need for the processing power they already $6 billion game-console market, it was beginning to feel the have, Sony has been busy trying to figure out how to get more heat from Sega’s Dreamcast (see MPR 6/1/98, p. 8), which has of it—lots more. The company has apparently succeeded: at sold over a million units since its debut last November. With the recent International Solid-State Circuits Conference (see a 200-MHz Hitachi SH-4 and NEC’s PowerVR graphics chip, MPR 4/19/99, p. 20), Sony Computer Entertainment (SCE) Dreamcast delivers 3 to 10 times as many 3D polygons as and Toshiba described a multimedia processor that will be the PlayStation’s 34-MHz MIPS processor (see MPR 7/11/94, heart of the next-generation PlayStation, which—lacking an p. 9). To maintain king-of-the-mountain status, SCE had to official name—we refer to as PlayStation 2000, or PSX2. do something spectacular. And it has: the PSX2 will deliver Called the Emotion Engine (EE), the new chip upsets more than 10 times the polygon throughput of Dreamcast, the traditional notion of a game processor.