(Insight) Summary November, 2015

Total Page:16

File Type:pdf, Size:1020Kb

(Insight) Summary November, 2015 Interior Exploration Using Seismic Investigations, Geodesy, and Heat Transport (InSight) Summary mr Note: Sections that deal with the Participating Scientist program have been removed !"#$%&'($"%)*+ Sue Smrekar, Jet Propulsion Laboratory, California Institute of Technology Elizabeth Barrett, Jet Propulsion Laboratory, California Institute of Technology Don Banfield, Cornell University Catherine Johnson, University of British Columbia Bill Folkner, Jet Propulsion Laboratory, California Institute of Technology Matt Golombek, Jet Propulsion Laboratory, California Institute of Technology Matthias Grott, DLR Institute of Planetary Research Philippe Lognonné, Institut de Physique du Globe de Paris Justin Maki, Jet Propulsion Laboratory, California Institute of Technology Nils Mueller, Jet Propulsion Laboratory, California Institute of Technology Kathryn Rowe, University of California Los Angeles Chris Russell, University of California Los Angeles Miles Smith, Jet Propulsion Laboratory, California Institute of Technology Tilman Spohn, DLR Institute of Planetary Research !",-&./0+'1*+ The InSight Project Science Office !"#$%&"'()* Although every effort will be made to implement the designs and plans described in this package, budgetary, programmatic, schedule, or technical issues may result in changes in these plans.! 2 1 Table of Contents !! "#$%#&$'())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(*! "#$! %&'()*+,!-.*/.0*1!################################################################################################################################!2! "#"! 3+4056,!70880&+!4())9/:!#####################################################################################################################!2! "#;! 3+4056,!4'0*+'*!-<=*',0.*8!####################################################################################################################!2! "#2! 3+4056,!4'0*+'*!>*9)!##############################################################################################################################!?! "#@! A9+B0+5!40,*!4*C*',0&+!#############################################################################################################################!?! +! ,-$(./01$%())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(2! ;#$! D980'!%*8'/0E,0&+!######################################################################################################################################!F! ;#"! G+*/5:!############################################################################################################################################################!H! ;#;! >*C*'&)!#########################################################################################################################################################!H! *! 34&$04$(5067%89$07(50#$67&:/7&;06())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(<<! *)<! 3$&69&4(=>?$%&9$07(@;%(507$%&;%(37%8478%$(A3=53B())))))))))))))))))))))))))))))))))))))))))))))))))))(<<! 2#$#$! %*8'/0E,0&+!#######################################################################################################################################!$$! 2#$#"! 4'0*+'*!-<=*',0.*8!#########################################################################################################################!$;! 2#$#;! 4'0*+'*!I&9C!3)EC*)*+,9,0&+!9+B!4*+8&/!J*/K&/)9+'*8!############################################!$2! 2#$#2! 3+8,/()*+,!-E*/9,0&+!#################################################################################################################!$L! 2#$#@! M9C0</9,0&+!########################################################################################################################################!$L! 2#$#?! 4G34!NC056,!4&K,19/*!-E*/9,0&+!###############################################################################################!$F! 2#$#L! I/&(+B!4:8,*)!-E*/9,0&+!#########################################################################################################!$F! *)!! C8>&D&/%E(F/ED;/1(3$06;%(38&7$(ACF33B())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(!G! 2#"#$! 3+,/&B(',0&+!####################################################################################################################################!"O! 2#"#"! >*)E*/9,(/*!9+B!P0+B8!K&/!3+4056,!Q>P3R4S!#################################################################!"$! 2#"#;! J/*88(/*!4*+8&/!QJ4S!###################################################################################################################!"2! 2#"#2! 3+4056,!NC(T!I9,*!Q3NIS!################################################################################################################!"L! *)+! H$/7(ID;'(/01(F-E6&4/D(F%;?$%7&$6(F%;J$(AHF+B()))))))))))))))))))))))))))))))))))))))))))))))))))))))(!2! 2#;#$! 3+,/&B(',0&+!####################################################################################################################################!"F! 2#;#"! 4'0*+'*!-<=*',0.*8!#########################################################################################################################!;O! 2#;#;! %*,*',&/8!###########################################################################################################################################!;$! 2#;#2! >6*/)9C!M&+B(',0.0,:!7*98(/*)*+,!####################################################################################!;"! 2#;#@! 4(/K9'*!D/056,+*88!7*98(/*)*+,!#############################!=%%;%K(L;;M9/%M(0;7(1$@&0$1)! 2#;#?! 4'0*+'*!>*,6*/!>*)E*/9,(/*!7*98(/*)*+,8!####################################################################!;2! 2#;#L! 3+8,/()*+,!-E*/9,0&+!#################################################################################################################!;2! 2#;#F! M9C0</9,0&+!########################################################################################################################################!;?! *)*! 5067%89$07(N$?D;E9$07(3E67$9(A5N3B()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(+2! 2#2#$! 3+,/&B(',0&+!####################################################################################################################################!;F! 2#2#"! 3+8,/()*+,!%*EC&:)*+,!U/)!Q3%US!######################################################################################!;F! 2#2#;! 3+8,/()*+,!M&+,*T,!M9)*/9!Q3MMS!#########################################################################################!2$! 2#2#2! 3+8,/()*+,!%*EC&:)*+,!M9)*/9!Q3%MS!###############################################################################!2"! *)O! P;7/7&;0(/01(507$%&;%(37%8478%$(=>?$%&9$07(AP53=B())))))))))))))))))))))))))))))))))))))))))))))))(**! 2#@#$! 3+,/&B(',0&+!####################################################################################################################################!22! 2#@#"! 4'0*+'*!-<=*',0.*8!#########################################################################################################################!2@! 2#@#;! 3+8,/()*+,9,0&+!#############################################################################################################################!2@! 2#@#2! -E*/9,0&+!##########################################################################################################################################!2L! 2#@#@! M9C0</9,0&+!########################################################################################################################################!2L! O! Q&66&;0(FD/00&0:())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(*R! @#$! A9(+'6V!M/(08*V!UEE/&9'6V!9+B!G%A!J698*8!###############################################################################!2L! 3 @#"! %*EC&:)*+,!##############################################################################################################################################!2L! @#;! 4'0*+'*!7&+0,&/0+5!###############################################################################################################################!2F! S! Q&66&;0("?$%/7&;06(C@7$%(./01&0:()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(*T! ?#$! >*9)!4,/(',(/*!#######################################################################################################################################!@O! ?#"! 4'0*+'*!-E*/9,0&+8!################################################################################################################################!@$! ?#;! J/*WC9+B0+5!>/90+0+5!9+B!-E*/9,0&+9C!X*9B0+*88!>*8,8!#######################################################!@;! R! N$64%&?7&;0(;@(C??$01&4$6())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(O+! 2! P$@$%$04$6())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(O+! T! .&67(;@(C4%;0E96()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(O2! C11&7&;0/D(N;489$076( UEE*+B0T!UY!3+4056,!U/'60.*!I*+*/9,0&+V!Z9C0B9,0&+V!9+B!>/9+8K*/!JC9+ 4 2 Overview 2.1 Document Overview +,-./article/01.23-41./5,1/"6#-7,5/896013:/;9<8=90 and/>-..-=6/=;1395-=6.. //&;;160-?/&/-./5,1/2@33165/ "6#-7,5/&32,-A1/B161395-=6:/C98-095-=6:/960/+396.D13/E896F/ 2.2 InSight Mission Summary "6#-7,5/-./;935/=D/G&#&H./!-.2=A13</E3=739>F/"6#-7,5/-./9/>-..-=6/010-29510/5=/G&#&H./1DD=35./5=/ @6013.5960/5,1/D@609>16598/;3=21..1./=D/51331.53-98I;89615/D=3>95-=6/960/1A=8@5-=6/4</;13D=3>-67/9/
Recommended publications
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • NASA's Curiosity Rover Maximizes Data Sent to Earth by Using International Space Data Communication Standards
    Press Release For immediate release NASA's Curiosity Rover Maximizes Data Sent to Earth by Using International Space Data Communication Standards WASHINGTON, 22 August 2012 (CCSDS) – NASA’s Mars Science Laboratory (MSL) mission began its planned 2-year Mars surface exploration mission on August 6 after landing its large, mobile laboratory called Curiosity. The goal of the mission is to assess whether Mars has ever had, or still has, environmental conditions favorable to microbial life. Curiosity, with its one-ton payload carrying capacity carries 10 science instruments that will gather samples of rocks and soil, and process and distribute them to onboard test chambers inside analytical instruments. Some of the rover’s scientific data, including images of the surface of Mars collected by Curiosity’s 17 onboard cameras, are sent directly to and from Earth via NASA’s Deep Space Network (DSN) of large ground antennas. However, once Curiosity becomes fully operational most of the scientific and engineering data will be transferred via relay satellites that are in orbit around Mars. These are primarily the Mars Reconnaissance Orbiter (MRO) and the Mars Odyssey (ODY) spacecraft. The MSL Mars-Earth communications systems are using internationally-agreed space data communications standards to enable reliable transmission of the expected rich data sets to be gathered by Curiosity. These standards were developed by a team of international space data communication specialists collaborating within the Consultative Committee for Space Data Systems (CCSDS). Use of internationally-agreed upon standards reduce cost and risk to space missions, and also offer rich “cross-support” capabilities to collaborate since key data interfaces are inherently interoperable.
    [Show full text]
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
    Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering
    The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering Laurel Mossman, Kate Schein, and Amelia Peoples Senior Division Group Documentary Word Count: 499 Our group chose the topic, Donna Shirley and her Mars rover, because of our connections and our interest level in not only science but strong, determined women. One of our group member’s mothers worked for a man under Ms. Shirley when she was developing the Mars rover. This provided us with a connection to Ms. Shirley, which then gave us the amazing opportunity to interview her. In addition, our group is interested in the philosophy of equality and we have continuously created documentaries that revolve around this idea. Every member of our group is a female, so we understand the struggles and discrimination that women face in an everyday setting and wanted to share the story of a female that faced these struggles but overcame them. Thus after conducting a great amount of research, we fell in love with Donna Shirley’s story. Lastly, it was an added benefit that Ms. Shirley is from Oklahoma, making her story important to our state. All of these components made this topic extremely appealing to us. We conducted our research using online articles, Donna Shirley’s autobiography, “Managing Martians”, news coverage from the launch day, and our interview with Donna ​ ​ Shirley. We started our research process by reading Shirley’s autobiography. This gave us insight into her college life, her time working at the Jet Propulsion Laboratory, and what it was like being in charge of such a barrier-breaking mission.
    [Show full text]
  • Solar System Exploration
    Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system.
    [Show full text]
  • Kevin Gill ‘11G
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 14, NUMBER 1, FALL 2018 EXPLORING THE UNIVERSE: Meet Kevin Gill ‘11G Michelle Marrone (From Rivier Today, Fall 2018) From the comfort of his lab chair in sunny, southern California, Kevin Gill ’11G has a view into outer space. As a Science Data Software Engineer at NASA’s Jet Propulsion Laboratory (JPL), he spends his time planning and designing technology in support of environmental science and space exploration, as well as data visualization and planetary imaging. His recent work not only produced the first-ever close views of Saturn, but also contributed to NASA’s team winning an Emmy Award. Kevin earned his M.S. in Computer Science at Rivier and has been designing software to render the unique images he gathers ever since. He used an algorithm he developed during his program at Rivier to generate hypothetical images portraying Mars as a vibrant planet with oceans, an oxygen-rich atmosphere, and a green biosphere. The images went viral and within a week his work was featured on major media networks—Discovery News, Fox News, Universe Today, and the Huffington Post. His work captured NASA’s attention and paved the way for his career move. “Rivier taught me many of the algorithms and development practices I still use today at NASA,” says Kevin. “In fact, I can trace the lineage of code currently running on NASA systems directly to my final master’s project at the University.” The systems and tools he develops support a range of scientists specializing in the areas of climate, oceanography, asteroids, planetary science, and others.
    [Show full text]
  • Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
    Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY ..........................................................................................................................
    [Show full text]
  • Laser Retroreflectors for Insight and an International Mars Geophysical Network (MGN)
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1492.pdf Laser Retroreflectors for InSight and an International Mars Geophysical Network (MGN). S. Dell’Agnello1, G.O. Delle Monache1, L. Porcelli1,2, M. Tibuzzi1, L. Salvatori1, C. Mondaini1, M. Muccino1, L. Ioppi1, O. Luongo1, M. Petrassi1, G. Bianco1,3, R. Vittori1,4, W.B. Banerdt5, J.F. Grinblat5, C. Benedetto3, F. Pasquali3, R. Mugnuolo3, D.C. Gruel5, J.L.Vago6 and P. Baglioni6. 1Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Frascati (INFN–LNF), Via E. Fermi 40, 00044, Frascati, Italy ([email protected]); 2Dipartimento di Fisica, Università della Calabria (UniCal), Via P. Bucci, 87036, Arcavacata di Rende, Italy; 3Agenzia Spaziale Italiana– Centro di Geodesia Spaziale “Giuseppe Colombo” (ASI–CGS), Località, Terlecchia 75100, Matera, Italy; 4Italian Air Force, Rome, Italy, ASI and Embassy of Italy in Washington DC; 5NASA–Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA 91109, USA; 6ESA–ESTEC, Noordwijk, The Netherlands. Abstract. There are laser retroreflectors on the Moon, of the INFN-ASI Affiliation-Association to NASA- but there were no laser retroreflectors on Mars until the SSERVI sservi.nasa.gov) is shown in the figure below. NASA InSight mission [1][2] landed and started oper- ating successfully on the surface of the red planet on Nov. 26, 2018. The ESA ExoMars Schiaparelli mis- sion, which unfortunately failed Mars landing in 2016, was carrying a laser retroreflector like InSight [3]. These instruments are positioned by measuring the time-of-flight of short laser pulses, the so-called “laser ranging” technique (for details on satellite/lunar laser ranging and altimetry see https://ilrs.gsfc.nasa.gov).
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • Long-Range Rovers for Mars Exploration and Sample Return
    2001-01-2138 Long-Range Rovers for Mars Exploration and Sample Return Joe C. Parrish NASA Headquarters ABSTRACT This paper discusses long-range rovers to be flown as part of NASA’s newly reformulated Mars Exploration Program (MEP). These rovers are currently scheduled for launch first in 2007 as part of a joint science and technology mission, and then again in 2011 as part of a planned Mars Sample Return (MSR) mission. These rovers are characterized by substantially longer range capability than their predecessors in the 1997 Mars Pathfinder and 2003 Mars Exploration Rover (MER) missions. Topics addressed in this paper include the rover mission objectives, key design features, and Figure 1: Rover Size Comparison (Mars Pathfinder, Mars Exploration technologies. Rover, ’07 Smart Lander/Mobile Laboratory) INTRODUCTION NASA is leading a multinational program to explore above, below, and on the surface of Mars. A new The first of these rovers, the Smart Lander/Mobile architecture for the Mars Exploration Program has Laboratory (SLML) is scheduled for launch in 2007. The recently been announced [1], and it incorporates a current program baseline is to use this mission as a joint number of missions through the rest of this decade and science and technology mission that will contribute into the next. Among those missions are ambitious plans directly toward sample return missions planned for the to land rovers on the surface of Mars, with several turn of the decade. These sample return missions may purposes: (1) perform scientific explorations of the involve a rover of almost identical architecture to the surface; (2) demonstrate critical technologies for 2007 rover, except for the need to cache samples and collection, caching, and return of samples to Earth; (3) support their delivery into orbit for subsequent return to evaluate the suitability of the planet for potential manned Earth.
    [Show full text]