Calypso Pipeline Deep-Water Marine Benthic Video Survey

Total Page:16

File Type:pdf, Size:1020Kb

Calypso Pipeline Deep-Water Marine Benthic Video Survey Calypso U.S. Pipeline, LLC, Mile Post (MP) 31 - MP 0 Deep-water Marine Benthic Video Survey Final Report Submitted to: Calypso U.S. Pipeline, LLC 1 August 2006 Submitted by: Charles G. Messing, Ph.D., Brian K. Walker, M.S. and Richard E. Dodge, Ph.D. National Coral Reef Institute, Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive, Dania Beach, FL 33004 John Reed, M.S., Harbor Branch Oceanographic Institution 5600 U.S. 1, North, Fort Pierce, FL 34946 1 Table of Contents I. Table of Contents................................................................................................................................2 II. List of Figures ..................................................................................................................................... 3 III. List of Tables ...................................................................................................................................... 4 IV. EXECUTIVE SUMMARY...................................................................................................................... 5 V. INTRODUCTION................................................................................................................................. 7 VI. PURPOSE.......................................................................................................................................... 7 VII. STUDY AREA..................................................................................................................................... 8 VIII. BACKGROUND INFORMATION........................................................................................................... 9 IX. METHODS ....................................................................................................................................... 12 A. Remotely Operated Vehicle (ROV)...................................................................................................... 12 B. Survey Pattern.................................................................................................................................. 12 C. Data Collection ................................................................................................................................. 13 D. Data Analyses................................................................................................................................... 14 E. Terminology...................................................................................................................................... 15 F. Summary of Survey Protocols ............................................................................................................ 15 G. QA/QC............................................................................................................................................. 15 H. Personnel......................................................................................................................................... 16 X. RESULTS......................................................................................................................................... 17 A. Fauna .............................................................................................................................................. 17 1. Shallow soft-bottom fauna (~600-1100 ft)........................................................................................ 17 2. Deep soft-bottom fauna (~1400-2570 ft) ......................................................................................... 18 3. Shallow hard-bottom fauna (~690-1100 ft) ...................................................................................... 20 4. Deep hard-bottom fauna (~1100-1725 ft) ........................................................................................ 24 B. Habitat categories ............................................................................................................................. 27 C. Transect Habitat Summary................................................................................................................. 30 D. Transect habitat summary for pipeline route BVS transect EW2 (extracted from DWP Project Final Report)33 E. Quantitative Data .............................................................................................................................. 34 XI. POTENTIAL IMPACTS ...................................................................................................................... 39 XII. REFERENCES ................................................................................................................................. 45 2 I. List of Figures Figure 1. Television Observed Nautical Grappling System (TONGS). Figure 2. Proposed Calypso LNG pipeline route with benthic video survey segment in red. Figure 3. Shallow soft-bottom fauna. Figure 4. Deep soft-bottom fauna. Figure 5. Deep soft-bottom fishes. Figure 6. Shallow hard-bottom fauna. Figure 7. Hardbottom fishes. Figure 8. Deep-water colonial azooxanthellate scleractinian corals. Figure 9. Deep hard-bottom fauna. Figure 10. Sediment substrates. Figure 11. Low- and high-cover hard-bottom substrates. Figure 12. Low-, moderate and high-relief substrates. Figure 13. Coral sediment substrates. Figure 14. CPCe analysis of percentage substrate cover, excluding shadows. Figure 15. CPCe analysis of percentage substrate cover, excluding shadows, for the three quantitative sites (5-7) taken along the pipeline route (EW2) during the Deep Water Port Project benthic video survey. Figure 16. Percent contributions of major taxonomic groups of sessile and semi-sessile, habitat- forming, hard-bottom organisms to total organism densities at quantitative still photographic sites. Figure 17. Percent contributions of major taxonomic groups of sessile and semi-sessile, habitat- forming, hard-bottom organisms to total organism densities at the three quantitative photo sites (5- 7) taken along the pipeline route (EW2) during the Deep Water Port Project benthic video survey. 3 II. List of Tables Table 1. Deep-water colony-forming corals capable of forming complex 3-dimensional habitats in 200-2000 m off the southeastern United States. Table 2. Sessile or semisessile organisms other than colonial corals that may indicate hard-bottom substrates in 200-2000 m off the southeastern United States. Table 3. Locality and image data for quantitative still photographic sites. Table 4. CPCe analysis of percentage substrate cover. Table 5. Counts and densities of individual organisms in CPC analysis images. Table 6. Counts and densities of individual organisms in CPC analysis images for the three quantitative photo sites taken along the pipeline route during the Deep Water Port Survey (sites 5-7 along transect EW2). Table 7. Counts and densities of individual sessile and semi-sessile organisms in CPC analysis images for the three quantitative photo sites taken along the pipeline route during the Deep Water Port Survey (sites 5-7 along transect EW2). 4 III. EXECUTIVE SUMMARY • The benthic video survey carried out for the Calypso U.S. Pipeline examined ~50 nm of linear transects of the seafloor off Fort Lauderdale, FL, along the permitted pipeline track and, where hard-bottom habitats were encountered, in adjacent segments !150 ft to the north and south of the pipeline track, using.the US Navy’s Television Observed Nautical Grappling System (TONGS) remotely operated vehicle (ROV). The survey was conducted from 11 to 15 May 2006. • Analyses of videographic and still photographic data revealed six habitat types: 1) Sediment (obsolete rippled and flat bioturbated). 2) Low-cover hard bottom – scattered clusters of rubble or small rocks, often in patches a few meters across, rarely in more extensive fields, and separated by expanses of sediment, occasionally accompanied by a few low-relief rocks up to 0.8 m across and rare veneered slabs or pavements to 1 m across. 3. High-cover hard bottom – Low- to moderate-relief hardbottom characterized by phosphoritic limestone outcrops, slabs and pavements, the latter up to several meters across, with varying amounts of rubble and small to large rocks, often in patches separated by expanses of sediment and intermixed with low- or high-cover hard- bottom areas of scattered rubble, small rocks and outcrops. 4. Moderate-relief hard bottom – A subset of high-cover hardbottom, this habitat appeared chiefly on the Miami Terrace escarpment and was characterized by irregular eroded outcrops, boulders, slabs and pavements with the dominant vertical relief from ~0.5 to 2 m. 5. High-relief hard bottom – A subset of high-cover hard bottom and restricted to the Terrace escarpment. Consisted of ledges, steep slopes and escarpments—abrupt vertical and near-vertical hard substrates with generally greater than 1-m relief and reaching 20 m, including sharp and often projecting vertical edges of pavements and slabs, boulder-strewn or irregular cemented karstic slopes, often with sediment areas with rocks and boulders at their bases. 6. Tilefish burrows – A single great northern tilefish (Lopholatilus chamaeleonticeps) was observed. 7. Pennatulids – chiefly widely scattered colonies of a sea pen in >900 ft. 8. Coral rubble –Small skeletal debris—twigs and small branches of colonial azooxanthellate stony corals (Scleractinia) ranging from sparse to dense, with broken branches forming a continuous carpet. 9. Dead standing coral – At least partly intact skeletal remains of colonial
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Jubilee Field Draft EIA Chapter 4 6 Aug 09.Pdf
    4 ENVIRONMENTAL AND SOCIO-ECONOMIC BASELINE 4.1 INTRODUCTION This chapter provides a description of the current environmental and socio- economic situation against which the potential impacts of the Jubilee Field Phase 1 development can be assessed and future changes monitored. The chapter presents an overview of the aspects of the environment relating to the surrounding area in which the Jubilee Field Phase 1 development will take place and which may be directly or indirectly affected by the proposed project. This includes the Jubilee Unit Area, the Ghana marine environment at a wider scale and the six districts of the Western Region bordering the marine environment. The Jubilee Unit Area and its regional setting are shown in Figure 4.1. The project area is approximately 132 km west-southwest of the city of Takoradi, 60 km from the nearest shoreline of Ghana, and 75 km from the nearest shoreline of Côte d’Ivoire. Figure 4.1 Project Location and Regional Setting ENVIRONMENTAL RESOURCES MANAGEMENT TULLOW GHANA LIMITED 4-1 The baseline description draws on a number of primary and secondary data sources. Primary data sources include recent hydrographic studies undertaken as part of the exploration well drilling programme in the Jubilee field area, as well as an Environmental Baseline Survey (EBS) which was commissioned by Tullow and undertaken by TDI Brooks (2008). An electronic copy of the EBS is attached to this EIS. It is noted that information on the offshore distribution and ecology of marine mammals, turtles and offshore pelagic fish is more limited due to limited historic research in offshore areas.
    [Show full text]
  • Coelenterata: Anthozoa), with Diagnoses of New Taxa
    PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Table B – Subclass Octocorallia
    Table B – Subclass Octocorallia BINOMEN ORDER SUBORDER FAMILY SUBFAMILY GENUS SPECIES SUBSPECIES COMN_NAMES AUTHORITY SYNONYMS #Records Acanella arbuscula Alcyonacea Calcaxonia Isididae n/a Acanella arbuscula n/a n/a n/a n/a 59 Acanthogorgia armata Alcyonacea Holaxonia Acanthogorgiidae n/a Acanthogorgia armata n/a n/a Verrill, 1878 n/a 95 Anthomastus agassizii Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus agassizii n/a n/a (Verrill, 1922) n/a 35 Anthomastus grandiflorus Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus grandiflorus n/a n/a Verrill, 1878 Anthomastus purpureus 37 Anthomastus sp. Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus sp. n/a n/a Verrill, 1878 n/a 1 Anthothela grandiflora Alcyonacea Scleraxonia Anthothelidae n/a Anthothela grandiflora n/a n/a (Sars, 1856) n/a 24 Capnella florida Alcyonacea n/a Nephtheidae n/a Capnella florida n/a n/a (Verrill, 1869) Eunephthya florida 44 Capnella glomerata Alcyonacea n/a Nephtheidae n/a Capnella glomerata n/a n/a (Verrill, 1869) Eunephthya glomerata 4 Chrysogorgia agassizii Alcyonacea Holaxonia Acanthogorgiidae Chrysogorgiidae Chrysogorgia agassizii n/a n/a (Verrill, 1883) n/a 2 Clavularia modesta Alcyonacea n/a Clavulariidae n/a Clavularia modesta n/a n/a (Verrill, 1987) n/a 6 Clavularia rudis Alcyonacea n/a Clavulariidae n/a Clavularia rudis n/a n/a (Verrill, 1922) n/a 1 Gersemia fruticosa Alcyonacea Alcyoniina Alcyoniidae n/a Gersemia fruticosa n/a n/a Marenzeller, 1877 n/a 3 Keratoisis flexibilis Alcyonacea Calcaxonia Isididae n/a Keratoisis flexibilis n/a n/a Pourtales, 1868 n/a 1 Lepidisis caryophyllia Alcyonacea n/a Isididae n/a Lepidisis caryophyllia n/a n/a Verrill, 1883 Lepidisis vitrea 13 Muriceides sp.
    [Show full text]
  • OCS Study BOEM 2017-024
    OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico Author Paul Sammarco Prepared under BOEM Contract M11AC00005 by Louisiana Universities Marine Consortium 8124 Highway 56 Baton Rouge, LA 70344-2110 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management February 2017 Gulf of Mexico OCS Region DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and Louisiana Universities Marine Consortium (LUMCON). This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not necessarily signify that the contents reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this Gulf of Mexico OCS Region report, go to the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program Information System website and search on OCS Study BOEM 2017-024. This report can be viewed at select Federal Depository Libraries. It can also be obtained from the National Technical Information Service; the contact information is below. U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd. Springfield, Virginia 22312 Phone: (703) 605-6000, 1(800)553-6847 Fax: (703) 605-6900 Website: http://www.ntis.gov/ CITATION Sammarco, Paul W.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]