Descriptive Skeletal Anatomy of Blommersia Transmarina (Amphibia: Anura: Mantellidae) from the Comoro Islands

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Skeletal Anatomy of Blommersia Transmarina (Amphibia: Anura: Mantellidae) from the Comoro Islands Contributions to Zoology 89 (2020) 14-73 CTOZ brill.com/ctoz Descriptive skeletal anatomy of Blommersia transmarina (Amphibia: Anura: Mantellidae) from the Comoro Islands Javier H. Santos-Santos Department of Biogeography and Global Change (BGC-MNCN-CSIC), Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain Department of Animal Biology, University of Barcelona, Avenida Diagonal 645, 08028, Barcelona, Spain [email protected] Mireia Guinovart-Castán Department of Biogeography and Global Change (BGC-MNCN-CSIC), Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain David R. Vieites Department of Biogeography and Global Change (BGC-MNCN-CSIC), Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain [email protected] Abstract Mantellid frogs present an extensive adaptive radiation endemic to Madagascar and Comoros, being the subfamily Mantellinae the most morphologically and ecologically diverse. The Mantellinae present key innovative evolutionary traits linked to their unique reproductive behavior, including the presence of femoral glands and a derived vomeronasal organ. In addition, previous studies pointed to size differ- entiation in playing an important role in species’ dispersal capacities and shaping of their geographic ranges. Despite the high phenotypic variation observed in this clade, to date an exhaustive morphologi- cal analysis of their anatomy has still not been performed, much less in relation to internal structures. Here, we present a comprehensive skeletal description of a mantellid species, Blommersia transmarina, from the island of Mayotte in the Indian Ocean, which has potentially undergone a process of moderate gigantism compared to other Blommersia species. We describe its intraspecific skeletal variation utilizing non-destructive volume renderings from μCT-scans, and characterize the presence of sexual dimorphism and size covariation in skeletal structures. Notably, we found numerous signs of hyperossification, a novel structure for mantellids: the clavicular process, and the presence of several appendicular sesamoids. Our findings suggest that skeletal phenotypic variation in this genus may be linked to biomechanical function for reproduction and locomotion. © SANTOS-SANTOS et al., 2020 | doi:10.1163/18759866-20191405 This is an open access article distributed under the terms of the cc-by 4.0 License. Downloaded from Brill.com10/04/2021 09:02:24AM via free access 204346 Descriptive skeletal anatomy of Blommersia transmarina 15 Keywords Anura: Mantellidae – computed tomography – hyperossifcation – intraspecific variation – osteology – size variation Introduction nauticus and Blommersia transmarina (Glaw et al., 2019). Mayotte consists of a main island, The Mantellidae represents the most species- Maore, and a small island, Pamanzi; with rich and ecologically diverse anuran fam- transmarine colonization having occurred ily endemic to the islands of Madagascar and exclusively on Maore. B. transmarina appears Mayotte (Glaw & Vences, 2007). It is divided to have likely having undergone a process of into three subfamilies: Mantellinae (Laurent, moderate gigantism (Glaw et al., 2019), a com- 1946), Laliostominae (Vences & Glaw, 2001), mon phenomenon in oceanic islands (Daugh- and Boophinae (Vences & Glaw, 2001). Exten- erty et al., 1993; Lomolino, 2005; Li et al., 2011). sive work (Guibé, 1978; Scott, 2005; Glaw & Several recent works studied anatomical Vences, 2006; Vieites et al., 2009) has been car- subsystems of various species within Man- ried out in view of resolving their systematics, tellidae, including external morphology (e.g., biogeography, and phylogenetic relationships Blommersia Vences et al., 2010; Pabijan et al., to elucidate their evolutionary history and 2011; Gephyromantis Scherz et al., 2017a; shed light on the nature of active speciation Guibemantis Vences et al., 2015; Mantidacty- processes. In this respect, variation in body lus Vences et al., 2002; Tysingymantis Glaw size has been found to influence species’ et al., 2006), femoral glands (Vences et al., range sizes and biogeographic setting, linking 2007; Altig, 2008), intercalary elements (Man- smaller body sizes to higher clade diversity zano et al., 2007), etc. However, there is cur- and geographically closer and more fragment- rently no study of skeletal data that makes ed ranges (Wollenberg et al., 2011; Pabijan reference to size differentiation, especially in et al., 2012). view that body size is known to influence dis- The Mantellidae is phylogenetically nested persal and evolutionary rates within the genus within Indian frogs and its most recent com- (Wollenberg et al., 2011; Pabijan et al., 2012). mon ancestor is estimated to have dispersed Since B. transmarina is the largest Blommersia from this landmass and colonized the island species identified to date (Glaw et al., 2019), it of Madagascar in the Early Cretaceous be- constitutes the perfect starting point to set a tween 87–76 Mya (Million years ago) (Crottini base to study the processes of miniaturization et al., 2012; Samonds et al., 2013). In addition, in the internal anatomy of mantellids on the there have been two more recent colonization grounds that miniaturization can lead to re- events by oceanic dispersal that are estimated duced ossification of post-metamorphic skel- to have occurred between 8–6 Mya (Vences et etal elements, hyperossification, and presents al., 2003; Crottini et al., 2012) from mainland more structural trade-offs than enlargement Madagascar to the neighboring island of May- (Hanken, 1993; Yeh, 2002; Hall, 2005; Pérez- otte in the Comoros, 300 km off the northwest Ben et al., 2018). coast of Madagascar, involving Boophinae and Here, we present the first comprehensive Mantellinae members of this family, which skeletal description of a species within the have recently been described as Boophis Mantellidae (but see Guibé, 1978; Scott, 2005), Downloaded from Brill.com10/04/2021 09:02:24AM via free access 204346 16 Santos-Santos et al. elaborating precise anatomical descriptions fixed with cotton and submerged in 70% etha- of all skeletal elements, and define the level of nol within 50 mL polypropylene falcon tubes intraspecific phenotypic variation (n = 10) of before CT-scanning in a Nikon XT H-160 sys- highly variable elements. Anatomical descrip- tem [reconstructed voxel size (μm) = 29.5–42 tions are based on high-resolution rendered (isometric); X-ray (kV) = 53–56; X-ray (μA) = skeletons obtained from μCT (i.e., computed 172–188; Projections = 1800; voxels = 1008] at tomography) volume scans of individuals the internal Service of Non-destructive Tech- recently captured in Mayotte, Comoros. Ap- niques of the MNCN-CSIC. The CT-scans proximations of non-calcified structures were were reconstructed with CT Pro 3D software. inferred from additional CT-scans of stained Individual skeletons were volume rendered specimens (see Santos-Santos, 2019). Descrip- and visualized in Avizo® version 9.2 software tions are made with elements referenced in a with volrenWhite and physics colormaps to primary anterior (rostral) to posterior (cau- observe bone densities. Images were taken dal) axis and a secondary proximal (medial) in perspective mode in Avizo® to capture the to distal (lateral) axis. With this anatomical largest amount of skeletal features in each study we aim to create a reference for future view. Additional CT-scans of priorly soft- comparative studies with other mantellids tissue-stained specimens were performed to species, as well as explore their phenotypic corroborate the position of non-calcified ana- evolutionary processes, including miniatur- tomical elements; these were performed with a ization / size variation in the family. custom setup [reconstructed voxel size (μm) = 30–35 (isometric); X-ray (kV) = 80; X-ray (μA) = 375; Projections = 1801; voxels = 1166] at the Material and methods Center for X-ray Tomography (UGCT) in col- laboration with the Evolutionary Morphol- A total of 10 (five male and five female) adult ogy of Vertebrates Lab of Ghent University, Blommersia transmarina individuals were re- Belgium (see Santos-Santos, 2019). The speci- trieved from the collections at the National men MNCN50446 was used as a reference Museum of Natural History (MNCN-CSIC) for the generalized anatomical description. in Madrid, Spain (table 1). Individuals were The .stl file of its skeletal segmentation is Table 1 Data and external snout–vent length (SVLext) in mm of the Blommersia transmarina individuals used for the current study. Collection n° Field n° Sex SVLext Locality MNCN50430 DRV6835 F 29.28 Mont Choungui MNCN50431 DRV6848 F 26.5 Mont Combani MNCN50432 DRV6805 F 29.13 Mont Combani MNCN50433 DRV6813 F 30.38 Mont Tsapere MNCN50435 DRV6832 M 25.5 Mont Bénara MNCN50436 DRV6833 M 27.5 Mont Bénara MNCN50437 DRV6841 M 24.64 Mont Bénara MNCN50439 DRV6836 M 27 Mont Bénara MNCN50446 DRV6807 M 29 Mont Tsapere N/A DRV6851 F 24.5 Mont Combani Downloaded from Brill.com10/04/2021 09:02:24AM via free access 204346 Descriptive skeletal anatomy of Blommersia transmarina 17 available on the Spanish National Research Results Council (CSIC) repository (https://digital.csic .es/handle/10261/190938). Skull In addition, a total of 123 linear distances There are two types of bone in the cranium: (see Appendix 1) were measured on the ren- endochondral (i.e., develops from osteoblasts dered skeletons of all individuals to obtain within cartilage) and dermal or membranous
Recommended publications
  • Predation Upon Mantella Aurantiaca in the Torotorofotsy Wetlands, Central-Eastern Madagascar
    Herpetology Notes, volume 2: 95-97 (2009) (published online on 10 July 2009) Predation upon Mantella aurantiaca in the Torotorofotsy wetlands, central-eastern Madagascar Olga Jovanovic1*, Miguel Vences1, Goran Safarek2, Falitiana C.E. Rabemananjara3, Rainer Dolch4 Abstract. Malagasy poisonous frogs of genus Mantella are small, diurnal frogs with skin glands containing alkaloids and characterised by aposematic colouration. Due to their noxiousness and warning colouration, it is thought that they do not have many natural predators. Until now, only one successful and one aborted predation on Mantella frogs were reported. Herein, we account about two successful predations on M. aurantiaca in Torotorofotsy wetland, in central-eastern Madagascar. The first predation was observed by lizard Zoonosaurus sp. and the second predation by a snake probably belonging to Thamnosophis lateralis. Both predators did not seem to mind the taste of the M. aurantiaca and ingested it. Keywords. Amphibia: Mantellidae, poison frogs, Thamnosophis, Zoonosaurus Only little is known about predation on poisonous genus Melanophryniscus of southeastern South America, frogs in general, in particular for those containing in Malagasy poison frogs of the genus Mantella (family skin alkaloids. Until now, there are around 30 reports Mantellidae) of Madagascar, and the myobatrachid published on predation on poisonous frogs, mostly genus Pseudophryne of Australia (Daly, Highet and belonging to the families Bufonidae and Leptodactylidae Myers, 1984; Daly et al., 2002). All of
    [Show full text]
  • Character Assessment, Genus Level Boundaries, and Phylogenetic Analyses of the Family Rhacophoridae: a Review and Present Day Status
    Contemporary Herpetology ISSN 1094-2246 2000 Number 2 7 April 2000 CHARACTER ASSESSMENT, GENUS LEVEL BOUNDARIES, AND PHYLOGENETIC ANALYSES OF THE FAMILY RHACOPHORIDAE: A REVIEW AND PRESENT DAY STATUS Jeffery A. Wilkinson ([email protected]) and Robert C. Drewes ([email protected]) Department of Herpetology, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118 Abstract. The first comprehensive phylogenetic analysis of the family Rhacophoridae was conducted by Liem (1970) scoring 81 species for 36 morphological characters. Channing (1989), in a reanalysis of Liem’s study, produced a phylogenetic hypothesis different from that of Liem. We compared the two studies and produced a third phylogenetic hypothesis based on the same characters. We also present the synapomorphic characters from Liem that define the major clades and each genus within the family. Finally, we summarize intergeneric relationships within the family as hypothesized by other studies, and the family’s current status as it relates to other ranoid families. The family Rhacophoridae is comprised of over 200 species of Asian and African tree frogs that have been categorized into 10 genera and two subfamilies (Buergerinae and Rhacophorinae; Duellman, 1993). Buergerinae is a monotypic category that accommodates the relatively small genus Buergeria. The remaining genera, Aglyptodactylus, Boophis, Chirixalus, Chiromantis, Nyctixalus, Philautus, Polyp edates, Rhacophorus, and Theloderma, comprise Rhacophorinae (Channing, 1989). The family is part of the neobatrachian clade Ranoidea, which also includes the families Ranidae, Hyperoliidae, Dendrobatidae, Arthroleptidae, the genus Hemisus, and possibly the family Microhylidae. The Ranoidea clade is distinguished from other neobatrachians by the synapomorphic characters of completely fused epicoracoid cartilages, the medial end of the coracoid being wider than the lateral end, and the insertion of the semitendinosus tendon being dorsal to the m.
    [Show full text]
  • Does Selective Wood Exploitation Affect Amphibian Diversity? the Case of An’Ala, a Tropical Rainforest in Eastern Madagascar
    Oryx Vol 38 No 4 October 2004 Does selective wood exploitation affect amphibian diversity? The case of An’Ala, a tropical rainforest in eastern Madagascar Denis Vallan, Franco Andreone, Vola H. Raherisoa and Rainer Dolch Abstract The diversity of amphibians before and rainforest habitat showed a non-significant 10.1% after low-level forest exploitation in An’Ala forest in decrease in abundance after logging. It appears therefore central-eastern Madagascar was compared over the that amphibians are relatively resilient to a low-level course of 4 years. Neither abundance nor diversity of of forest exploitation and their diversity is apparently not amphibians generally were significantly affected by affected, at least in the short-term. This and other studies low-level selective logging, although the abundance of have, however, shown that logging commonly results individual species differed. Mantelline anurans were in a shift in species composition, with species typical of the most sensitive, in contrast to the tree frogs of the pristine rainforests being replaced by species adapted to subfamily Boophinae (Mantellidae) and Cophylinae secondary habitats. (Microhylidae). The abundance of Mantellinae anurans decreased by 15.8% after logging, whereas Boophinae Keywords Amphibian, Boophinae, Cophylinae, and Microhylidae anurans increased by 12.1% and diversity, Mantellinae, rainforest, selective wood 3.7%, respectively. In general, species strongly tied to exploitation. Introduction deforestation upon natural animal communities is urgently needed. Tropical rainforests worldwide are cleared and exploited Despite the existence of 16 protected areas in the for many reasons, and trees are often felled selectively, eastern rainforests (ANGAP, 2001), the vast majority of especially if the aim is to remove the most valuable the remaining natural vegetation does not have legal timber rather than clear felling for pasture and/or crop protection.
    [Show full text]
  • Correlates of Eye Colour and Pattern in Mantellid Frogs
    SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris.
    [Show full text]
  • Resolving a Taxonomic and Nomenclatural Puzzle in Mantellid Frogs: Synonymization of Gephyromantis Azzurrae with G
    ZooKeys 951: 133–157 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.951.51129 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Resolving a taxonomic and nomenclatural puzzle in mantellid frogs: synonymization of Gephyromantis azzurrae with G. corvus, and description of Gephyromantis kintana sp. nov. from the Isalo Massif, western Madagascar Walter Cocca1, Franco Andreone2, Francesco Belluardo1, Gonçalo M. Rosa3,4, Jasmin E. Randrianirina5, Frank Glaw6, Angelica Crottini1,7 1 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, No 7, 4485-661 Vairão, Portugal 2 Sezione di Zoologia, Mu- seo Regionale di Scienze Naturali, Via G. Giolitti, 36, 10123 Torino, Italy 3 Institute of Zoology, Zoological Society of London, Regent’s Park, NW1 4RY London, UK 4 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal 5 Parc Botanique et Zoologique de Tsimbazaza, BP 4096, Antananarivo 101, Madagascar 6 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstraße 21, 81247 München, Germany 7 Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169- 007, Porto, Portugal Corresponding author: Angelica Crottini ([email protected]) Academic editor: A. Ohler | Received 14 February 2020 | Accepted 9 May 2020 | Published 22 July 2020 http://zoobank.org/5C3EE5E1-84D5-46FE-8E38-42EA3C04E942 Citation: Cocca W, Andreone F, Belluardo F, Rosa GM, Randrianirina JE, Glaw F, Crottini A (2020) Resolving a taxonomic and nomenclatural puzzle in mantellid frogs: synonymization of Gephyromantis azzurrae with G.
    [Show full text]
  • Ecology and Evolution of Phytotelm- Jreeding Anurans
    * ECOLOGY AND EVOLUTION OF PHYTOTELM- JREEDING ANURANS Richard M. Lehtinen Editor MISCELLANEOUS PUBLICATIONS I--- - MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 193 Ann Ahr, November, 2004 PUBLICATIONS OF THE MUSEUM OF ZQOLOGY, UNIVERSITY OF MICHIGAN NO. 192 J. B. BURCII,Editot* Ku1.1: SI.EFANOAND JANICEPAPPAS, Assistant Editoras The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series-the Miscellaneous P~rhlicationsand the Occasional Papers. Both serics were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of thesc series; beginning in 1990 these are titled Special Publications and are numbered. All s~tbmitledmanuscripts to any of the Museum's publications receive external review. The Occasiontrl Papers, begun in 1913, sellie as a mcdium for original studies based prii~cipallyupon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Mi.scelluneous Puhlicutions, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are publislled separately. It is not intended that they bc grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, Insects, Mollusks, and other topics is avail- able. Address inquiries to Publications, Museum of Zoology, The University of Michigan, Ann Arbor, Michigan 48 109-1079.
    [Show full text]
  • Zootaxa 1334: 27–43 (2006) ISSN 1175-5326 (Print Edition) ZOOTAXA 1334 Copyright © 2006 Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 1334: 27–43 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1334 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Discovery of a new basal relict lineage of Madagascan frogs and its implications for mantellid evolution FRANK GLAW1, SIMONE HOEGG2 & MIGUEL VENCES3 1Zoologische Staatssammlung, Münchhausenstr. 21, 81247 München, Germany 2Lehrstuhl für Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany 3Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author. E-mail: Frank Glaw, [email protected] Abstract Frogs of the subfamily Mantellinae (Amphibia: Anura: Mantellidae) are a species-rich and diverse lineage endemic to the Madagascan region. The major synapomorphy of this clade is a derived reproductive mode including an unusual mating behaviour (loss of strong mating amplexus, egg deposition outside of water) and associated morphological adaptations (evolution of femoral glands, loss of nuptial pads). However, the evolutionary steps towards this unique character complex remain obscure. We here describe a recently discovered new frog, Tsingymantis antitra gen. nov., sp. nov. from the moderately dry karstic massif Tsingy de Ankarana in northern Madagascar. The new species is not referable to any existing genus or species groups. A phylogenetic analysis, based on DNA sequences of four mitochondrial genes (12S and 16S rRNA, tRNAVal, cytochrome b) and one nuclear gene (rhodopsin) placed Tsingymantis without significant support as sister taxon of the Mantellinae which was found to be a well-defined monophyletic group (100% Bayesian and 99% bootstrap support). The position of Tsingymantis as the most basal clade of the Mantellinae is in agreement with several morphological and osteological characters, suggesting that this subfamily including Tsingymantis may be a monophyletic group whereas the Boophinae could represent the most basal clade of the Mantellidae.
    [Show full text]
  • Rampant Tooth Loss Across 200 Million Years of Frog Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Rampant tooth loss across 200 million years of frog evolution 2 3 4 Daniel J. Paluh1,2, Karina Riddell1, Catherine M. Early1,3, Maggie M. Hantak1, Gregory F.M. 5 Jongsma1,2, Rachel M. Keeffe1,2, Fernanda Magalhães Silva1,4, Stuart V. Nielsen1, María Camila 6 Vallejo-Pareja1,2, Edward L. Stanley1, David C. Blackburn1 7 8 1Department of Natural History, Florida Museum of Natural History, University of Florida, 9 Gainesville, Florida USA 32611 10 2Department of Biology, University of Florida, Gainesville, Florida USA 32611 11 3Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota USA 55102 12 4Programa de Pós Graduação em Zoologia, Universidade Federal do Pará/Museu Paraense 13 Emilio Goeldi, Belém, Pará Brazil 14 15 *Corresponding author: Daniel J. Paluh, [email protected], +1 814-602-3764 16 17 Key words: Anura; teeth; edentulism; toothlessness; trait lability; comparative methods 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • The First Endemic West African Vertebrate Family – a New Anuran Family Highlighting the Uniqueness of the Upper Guinean Biodiversity Hotspot Barej Et Al
    The first endemic West African vertebrate family – a new anuran family highlighting the uniqueness of the Upper Guinean biodiversity hotspot Barej et al. Barej et al. Frontiers in Zoology 2014, 11:8 http://www.frontiersinzoology.com/content/11/1/8 Barej et al. Frontiers in Zoology 2014, 11:8 http://www.frontiersinzoology.com/content/11/1/8 RESEARCH Open Access The first endemic West African vertebrate family – a new anuran family highlighting the uniqueness of the Upper Guinean biodiversity hotspot Michael F Barej1*, Andreas Schmitz2, Rainer Günther1, Simon P Loader3, Kristin Mahlow1 and Mark-Oliver Rödel1 Abstract Background: Higher-level systematics in amphibians is relatively stable. However, recent phylogenetic studies of African torrent-frogs have uncovered high divergence in these phenotypically and ecologically similar frogs, in particular between West African torrent-frogs versus Central (Petropedetes) and East African (Arthroleptides and Ericabatrachus) lineages. Because of the considerable molecular divergence, and external morphology of the single West African torrent-frog species a new genus was erected (Odontobatrachus). In this study we aim to clarify the systematic position of West African torrent-frogs (Odontobatrachus). We determine the relationships of torrent-frogs using a multi-locus, nuclear and mitochondrial, dataset and include genera of all African and Asian ranoid families. Using micro-tomographic scanning we examine osteology and external morphological features of West African torrent-frogs to compare them with other ranoids. Results: Our analyses reveal Petropedetidae (Arthroleptides, Ericabatrachus, Petropedetes) as the sister taxon of the Pyxicephalidae. The phylogenetic position of Odontobatrachus is clearly outside Petropedetidae, and not closely related to any other ranoid family.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Systematic Review of the Frog Family Hylidae, with Special Reference to Hylinae: Phylogenetic Analysis and Taxonomic Revision
    SYSTEMATIC REVIEW OF THE FROG FAMILY HYLIDAE, WITH SPECIAL REFERENCE TO HYLINAE: PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION JULIAÂ N FAIVOVICH Division of Vertebrate Zoology (Herpetology), American Museum of Natural History Department of Ecology, Evolution, and Environmental Biology (E3B) Columbia University, New York, NY ([email protected]) CEÂ LIO F.B. HADDAD Departamento de Zoologia, Instituto de BiocieÃncias, Unversidade Estadual Paulista, C.P. 199 13506-900 Rio Claro, SaÄo Paulo, Brazil ([email protected]) PAULO C.A. GARCIA Universidade de Mogi das Cruzes, AÂ rea de CieÃncias da SauÂde Curso de Biologia, Rua CaÃndido Xavier de Almeida e Souza 200 08780-911 Mogi das Cruzes, SaÄo Paulo, Brazil and Museu de Zoologia, Universidade de SaÄo Paulo, SaÄo Paulo, Brazil ([email protected]) DARREL R. FROST Division of Vertebrate Zoology (Herpetology), American Museum of Natural History ([email protected]) JONATHAN A. CAMPBELL Department of Biology, The University of Texas at Arlington Arlington, Texas 76019 ([email protected]) WARD C. WHEELER Division of Invertebrate Zoology, American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 294, 240 pp., 16 ®gures, 2 tables, 5 appendices Issued June 24, 2005 Copyright q American Museum of Natural History 2005 ISSN 0003-0090 CONTENTS Abstract ....................................................................... 6 Resumo .......................................................................
    [Show full text]