Quantum Random Number Generators and Their Roles

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Random Number Generators and Their Roles Quantum Random Number Generators Miguel Herrero-Collantes∗ Instituto Nacional de Ciberseguridad, Avenida Jos´eAguado, 41, Edificio INCIBE 24005, Le´on, Spain. EI Telecomunicaci´on, Department of Signal Theory and Communications, University of Vigo, Campus Universitario Lagoas-Marcosende, E-36310 Vigo, Spain. Juan Carlos Garcia-Escartin† Universidad de Valladolid, Dpto. Teor´ıa de la Se˜nal e Ing. Telem´atica, Paseo Bel´en no 15, 47011 Valladolid, Spain. (Dated: October 24, 2016) Random numbers are a fundamental resource in science and engineering with impor- tant applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. We discuss the different technologies in quantum ran- dom number generation from the early devices based on radioactive decay to the multiple ways to use the quantum states of light to gather entropy from a quantum origin. We also discuss randomness extraction and amplification and the notable possibility of gen- erating trusted random numbers even with untrusted hardware using device independent generation protocols. CONTENTS G. Generators based on the phase noise of lasers 21 H. Generators based on amplified spontaneous I. Motivation 2 emission 23 I. Generators based on Raman scattering 24 II. Random numbers and their applications 2 J. Generators based on optical parametric oscillators 27 A. Pseudorandom number generators and true random number generators 3 B. Random numbers in simulation 5 VIII. Non-optical Quantum Random Number Generators 28 C. Random numbers in cryptography 5 D. Random numbers in fundamental science 7 IX. Random numbers certified by quantum mechanics 29 A. Self-testing in quantum random number generators 30 III. Block description 8 B. Device independent quantum random number IV. Entropy estimation 9 generators 31 C. Other forms of quantum certification 33 V. Quantum Random Number Generators based on radioactive decay 10 X. Postprocessing 34 arXiv:1604.03304v2 [quant-ph] 21 Oct 2016 A. The first quantum random number generators 10 A. Randomness extractors 35 B. Evolution 12 C. Limitations 12 1. Deterministic extractors 35 2. Seeded extractors 36 VI. Random Number Generators based on noise 13 XI. Quantum randomness extractors: randomness expansion VII. Optical Quantum Random Number Generators 14 and randomness amplification 37 A. Quantum optics in random number generators 14 B. Branching path generators 15 A. Quantum randomness expansion 38 C. Time of arrival generators 17 B. Quantum randomness amplification 38 D. Photon counting generators 19 E. Attenuated pulse generators 20 XII. Randomness testing 39 F. Generators based on quantum vacuum fluctuations 20 XIII. Discussion 40 Acknowledgments 40 ∗ [email protected][email protected] References 40 2 I. MOTIVATION when each method is more appropriate. Due to their im- portance, we concentrate on applications to simulation Quantum mechanics offers interesting new protocols in and cryptography. the intersection between computer science, telecommu- Section III describes the main functional elements of nications, information theory and physics. Results like quantum random number generators and their roles. In the protocols for quantum key distribution (Bennett and Section IV, we present some mathematical measures of Brassard, 1984; Ekert, 1991) and efficient algorithms for randomness which are particularly useful to analyse the problems that are thought or known to be hard for clas- amount of available random bits and the security of quan- sical computers (Childs and van Dam, 2010; Ekert and tum random number generators. Jozsa, 1996) show quantum physics can have a profound Section V discusses QRNGs based on radioactive de- impact in the way we think about security, cryptography cay, which were the first proposed QRNGs and are still and computation. in use today. Section VI introduces random number gen- Despite the impressive experimental achievements of erators based on electronic noise and analyses when they the last decades, the current state of technology is still can be said to be quantum. not advanced enough for a full-scale universal quan- Section VII discusses how optics has modernized tum computer. Quantum key distribution, on the other QRNGs. Most present-day QRNGs are based on quan- hand, has already become an established technology and tum optics and we review the multiple implementations the first commercial systems have been demonstrated in that work with the quantum states of light. practical scenarios (Peev et al., 2009; Sasaki et al., 2011). Section VIII covers alternative QRNGs based on non- Another important well-established quantum technol- optical quantum phenomena and Section IX is centered ogy is quantum random number generation. Quantum on those QRNGs whose randomness is backed by quan- random number generators, QRNGs, are devices that tum mechanics. use quantum mechanical effects to produce random num- Section X gives a brief tour on the available classi- bers and have applications that range from simulation cal randomness extraction methods and Section XI in- to cryptography. They are usually simpler than other troduces the quantum protocols for randomness expan- quantum devices and are mature enough to be applied. sion and amplification that allow to produce good-quality QRNGs using different quantum phenomena have gone random outputs from weak randomness sources. from the lab to the shelves with at least eight exist- Section XII is an introduction to the statistical tests ing commercial products (ComScire, 2014; Hughes and that are usually employed to assess the quality of the Nordholt, 2016; ID Quantique, 2014; MPD, 2014; Pico- final random bit stream. Quant, 2014; QRB121, 2014; Quintessence Labs, 2014; Finally, in Section XIII, we give an overview on the Qutools, 2014) and online servers that provide quantum current state of quantum random number generation and random numbers on demand (ANU, 2016; Humboldt- the challenges and opportunities for the next generation Universit¨at, 2016; Stevanovi´c et al., 2008; University of of quantum devices in the field of randomness. Geneva, 2004; Walker, 1996), as well as many patents (Beausoleil et al., 2008; Dultz et al., 2002; Dultz and Hidlebrandt, 2002; Kim and Klass, 2001; Klass, 2003, II. RANDOM NUMBERS AND THEIR APPLICATIONS 2005; Lutkenhaus et al., 2007; Ribordy et al., 2009; Sartor and Zimmermann, 2015; Trifonov and Vig, 2007; Vartsky Random numbers are an essential resource in science, et al., 2011). In the last few years there has also been technology and many aspects of everyday life (Hayes, a large number of proposals, experiments, improvements 2001). Randomness is required to different extents in and exciting theoretical results in randomness extraction applications like cryptography, simulation, coordination and randomness certification. in computer networks or lotteries. Some applications The aim of this review is to collect the most important require a small amount of random numbers and still proposals for quantum random number generation and use manual and mechanical methods to generate ran- give an introduction to the new advanced protocols that domness, like tossing a coin, throwing a die, spinning a use quantum physics to process, certify or otherwise deal roulette wheel or a drawing a ball from a lottery machine. with random strings. This paper complements previous Here, we will concern ourselves with the generation of surveys on the topics of physical and quantum random random numbers for computers. number generation (Stipˇcevi´c, 2012; Stipˇcevi´cand Ko¸c, Defining randomness is a deep philosophical problem 2014) with a focus on QRNGs based on quantum optics. and we will not attempt to solve it here. In this Section, Section II gives a brief description of the most impor- we give common operational definitions of randomness tant applications of randomness in science and comput- that fit the different purposes the random numbers must ers. We review the differences between algorithmic meth- fulfil. For instance, in simulation, a method that gen- ods to produce random looking numbers and physical erates numbers simulating the statistics of the desired methods to produce true random numbers and discuss distribution can be considered to be “random enough”, 3 even if it produces a predictable sequence. that the repetition does not appear during the intended operation time. Apart from congruential linear generators, there is an- A. Pseudorandom number generators and true random other large family of PRNGs based on linear shift feed- number generators back registers, LFSRs, and their generalizations. The most notable generator in this class is the Mersenne In computing, it is important to distinguish between Twister (Matsumoto and Nishimura, 1998), which be- algorithmically generated numbers that mimic the statis- longs to the family of twisted generalized linear shift feed- tics of random distributions and random numbers gener- back registers. The Mersenne Twister has a period which ated from unpredictable physical events. is a Mersenne prime of the form 2n 1, for an integer Generating random numbers directly from a computer n. The most widely used pseudorandom− number gen- seems a particularly attractive idea. Methods that pro- erator is the MT19937, the standard implementation of duce random numbers from a deterministic algorithm are the Mersenne Twister with
Recommended publications
  • Dynamical Control of Matter Waves in Optical Lattices Sune Schøtt
    Aarhus University Faculty of Science Department of Physics and Astronomy PhD Thesis Dynamical Control of Matter Waves in Optical Lattices by Sune Schøtt Mai November 2010 This thesis has been submitted to the Faculty of Science at Aarhus Uni- versity in order to fulfill the requirements for obtaining a PhD degree in physics. The work has been carried out under the supervision of profes- sor Klaus Mølmer and associate professor Jan Arlt at the Department of Physics and Astronomy. Contents Contents i 1 Introduction 3 1.1 Thesis Outline .......................... 3 1.2 Bose-Einstein Condensation .................. 4 2 Experimental Setup and Methods 9 2.1 Overview ............................. 9 2.2 Magneto-Optic Trap and Optical Pumping .......... 9 2.3 Transport with Movable Quadrupole Traps . 13 2.4 Evaporative Cooling ...................... 14 2.5 Absorption Imaging ....................... 15 3 Optical Lattices 17 3.1 Introduction ........................... 17 3.2 AC Stark-shift Induced Potentials . 18 3.2.1 Classical and Semi-Classical Approaches . 18 3.2.2 Dressed State Picture . 20 3.3 Lattice Band Structure ..................... 22 3.3.1 Reciprocal Space Bloch Theorem . 23 3.3.2 The 1D Lattice Band-Structure . 23 4 Lattice Calibration Techniques 27 4.1 Introduction ........................... 27 4.2 Kapitza-Dirac Scattering .................... 28 4.3 Bloch Oscillation and LZ-Tunneling . 30 4.3.1 Bloch Oscillation .................... 31 4.3.2 Landau-Zener Theory . 31 i ii CONTENTS 4.3.3 Experimental Verification of the Landau-Zener Model 32 4.4 Lattice Modulation ....................... 35 4.5 Summary ............................ 35 5 Dynamically Controlled Lattices 39 5.1 Introduction ........................... 39 5.2 Overview ............................. 39 5.3 Controlled Matter Wave Beam Splitter .
    [Show full text]
  • Scalability and High-Efficiency of an $(N+ 1) $-Qubit Toffoli Gate Sphere
    Scalability and high-efficiency of an (n + 1)-qubit Toffoli gate sphere via blockaded Rydberg atoms Dongmin Yu1, Yichun Gao1, Weiping Zhang2,3, Jinming Liu1 and Jing Qian1,3,† 1State Key Laboratory of Precision Spectroscopy, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China 2Department of Physics and Astronomy, Shanghai Jiaotong University and Tsung-Dao Lee Institute, Shanghai 200240, China and 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China∗ The Toffoli gate serving as a basic building block for reversible quantum computation, has man- ifested its great potentials in improving the error-tolerant rate in quantum communication. While current route to the creation of Toffoli gate requires implementing sequential single- and two-qubit gates, limited by longer operation time and lower average fidelity. We develop a new theoretical protocol to construct a universal (n + 1)-qubit Toffoli gate sphere based on the Rydberg blockade mechanism, by constraining the behavior of one central target atom with n surrounding control atoms. Its merit lies in the use of only five π pulses independent of the control atom number n which leads to the overall gate time as fast as 125ns and the average fidelity closing to 0.999. The maximal filling number of control atoms can be∼ up to n = 46, determined by the spherical diame- ter which is equal to the blockade radius, as well as by the nearest neighbor spacing between two trapped-atom lattices. Taking n = 2, 3, 4 as examples we comparably show the gate performance with experimentally accessible parameters, and confirm that the gate errors mainly attribute to the imperfect blockade strength, the spontaneous atomic loss and the imperfect ground-state prepa- ration.
    [Show full text]
  • Lecture 8: Key Derivation, Protecting Passwords, Slow Hashes, Merkle Trees
    Lecture 8: Key derivation, protecting passwords, slow hashes, Merkle trees Boaz Barak Last lecture we saw the notion of cryptographic hash functions which are functions that behave like a random function, even in settings (unlike that of standard PRFs) where the adversary has access to the key that allows them to evaluate the hash function. Hash functions have found a variety of uses in cryptography, and in this lecture we survey some of their other applications. In some of these cases, we only need the relatively mild and well-defined property of collision resistance while in others we only know how to analyze security under the stronger (and not precisely well defined) random oracle heuristic. Keys from passwords We have seen great cryptographic tools, including PRFs, MACs, and CCA secure encryptions, that Alice and Bob can use when they share a cryptographic key of 128 bits or so. But unfortunately, many of the current users of cryptography are humans which, generally speaking, have extremely faulty memory capacity for storing large numbers. There are 628 ≈ 248 ways to select a password of 8 upper and lower case letters + numbers, but some letter/numbers combinations end up being chosen much more frequently than others. Due to several large scale hacks, very large databases of passwords have been made public, and one estimate is that the most frequent 10, 000 ≈ 214 passwords account for more than 90% of the passwords chosen. If we choose a password at random from some set D then the entropy of the password is simply log |D|. Estimating the entropy of real life passwords is rather difficult.
    [Show full text]
  • Pseudorandomness and Computational Difficulty
    PSEUDORANDOMNESS AND COMPUTATIONAL DIFFICULTY RESEARCH THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF SCIENCE HUGO KRAWCZYK SUBMITTED TOTHE SENATEOFTHE TECHNION —ISRAEL INSTITUTE OF TECHNOLOGY SHVAT 5750 HAIFAFEBRUARY 1990 Amis padres, AurorayBernardo, aquienes debo mi camino. ALeonor,compan˜era inseparable. ALiat, dulzuraycontinuidad. This research was carried out in the Computer Science Department under the supervision of Pro- fessor Oded Goldreich. To Oded, my deep gratitude for being both teacher and friend. Forthe innumerable hoursofstimulating conversations. Forhis invaluable encouragement and support. Iamgrateful to all the people who have contributed to this research and given me their support and help throughout these years. Special thanks to Benny Chor,Shafi Goldwasser,Eyal Kushilevitz, Jacob Ukel- son and Avi Wigderson. ToMikeLuby thanks for his collaboration in the work presented in chapter 2. Ialso wish to thank the Wolf Foundation for their generous financial support. Finally,thanks to Leonor,without whom all this would not have been possible. Table of Contents Abstract ............................. 1 1. Introduction ........................... 3 1.1 Sufficient Conditions for the Existence of Pseudorandom Generators ........ 4 1.2 The Existence of Sparse Pseudorandom Distributions . ............ 5 1.3 The Predictability of Congruential Generators ............... 6 1.4 The Composition of Zero-Knowledge Interactive-Proofs . ........... 8 2. On the Existence of Pseudorandom Generators ............... 10 2.1. Introduction .......................... 10 2.2. The Construction of Pseudorandom Generators .............. 13 2.3. Applications: Pseudorandom Generators based on Particular Intractability Assump- tions . ............................ 22 3. Sparse Pseudorandom Distributions ................... 25 3.1. Introduction .......................... 25 3.2. Preliminaries ......................... 25 3.3. The Existence of Sparse Pseudorandom Ensembles ............. 27 3.4.
    [Show full text]
  • Chapter 5. Atoms in Optical Lattices
    Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices provide a powerful tool for creating strongly correlated many- body systems of ultracold atoms. By choosing different lattice geometries one can obtain very different single particle dispersions. The ratio of the interaction and kinetic energies can be controlled by tuning the depth of the lattice. 5.1 Noninteracting particles in optical lattices The simplest possible periodic optical potential is formed by overlapping two counter-propagating beams. Electric field in the resulting standing wave is E(z) = E0 sin(kz + θ) cos !t (5.1) Here k = 2π/λ is the wavevector of the laser light. Following the general recipe for AC Stark effects, we calculate electric dipolar moments induced by this field in the atoms, calculate interaction between dipolar moments and the electric field, and average over fast optical oscillations (see chapter ??). The result is the potential 2 V (z) = −V0 sin (kz + θ) (5.2) 2 where V0 = α(!)E0 =2, with α(!) being polarizability. It is common to express 2 2 V0 in units of the recoil energy Er = ~ k =2m. In real experiments one also needs to take into account the transverse profile of the beam. Hence V (r?; z) = exp{−2r2=w2(z)g×V (z). In most experiments the main effect of the transverse profile is only to renormalize the parabolic confining potentia. Combining three perpendicular sets of standing waves we get a simple cubic lattice V (r) = −Vx 0 cosqxx − Vy 0 cosqyy − Vz 0 cosqzz (5.3) 3 4 CHAPTER 5.
    [Show full text]
  • Veselago Lensing with Ultracold Atoms in an Optical Lattice
    ARTICLE Received 9 Dec 2013 | Accepted 27 Jan 2014 | Published 14 Feb 2014 DOI: 10.1038/ncomms4327 Veselago lensing with ultracold atoms in an optical lattice Martin Leder1, Christopher Grossert1 & Martin Weitz1 Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman p-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications. 1 Institut fu¨r Angewandte Physik der Universita¨t Bonn, Wegelerstrae 8, 53115 Bonn, Germany. Correspondence and requests for materials should be addressed to M.W. (email: [email protected]). NATURE COMMUNICATIONS | 5:3327 | DOI: 10.1038/ncomms4327 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4327 eselago lensing is a concept based on negative of spatial periodicity l/4, generated by the dispersion of multi- refraction1–3, where a spatially diverging pencil of rays photon Raman transitions17.
    [Show full text]
  • Ultracold Atoms in a Disordered Optical Lattice
    ULTRACOLD ATOMS IN A DISORDERED OPTICAL LATTICE BY MATTHEW ROBERT WHITE B.S., University of California, Santa Barbara, 2003 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate College of the University of Illinois at Urbana-Champaign, 2009 Urbana, Illinois Doctoral Committee: Professor Paul Kwiat, Chair Assistant Professor Brian DeMarco, Director of Research Assistant Professor Raffi Budakian Professor David Ceperley Acknowledgments This work would not have been possible without the support of my advisor Brian DeMarco and coworkers Matt Pasienski, David McKay, Hong Gao, Stanimir Kondov, David Chen, William McGehee, Matt Brinkley, Lauren Aycock, Cecilia Borries, Soheil Baharian, Sarah Gossett, Minsu Kim, and Yutaka Miyagawa. Generous funding was provided by the Uni- versity of Illinois, NSF, ARO, and ONR. ii Table of Contents List of Figures..................................... v Chapter 1 Introduction .............................. 1 1.1 Strongly-interacting Boson Systems.......................1 1.2 Bose-Hubbard Model...............................2 1.3 Disordered Bose-Hubbard Model with Cold Atoms..............3 1.4 Observations...................................4 1.5 Future Work on the DBH Model........................5 1.6 Quantum Simulation...............................5 1.7 Outline......................................6 Chapter 2 BEC Apparatus............................ 8 2.1 Introduction....................................8 2.2 Atomic Properties................................8
    [Show full text]
  • Dynamics of Hubbard Hamiltonians with the Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Particles Axel Lode, Christoph Bruder
    Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles Axel Lode, Christoph Bruder To cite this version: Axel Lode, Christoph Bruder. Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles. Physical Review A, American Physical Society 2016, 94, pp.013616. 10.1103/PhysRevA.94.013616. hal-02369999 HAL Id: hal-02369999 https://hal.archives-ouvertes.fr/hal-02369999 Submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 94, 013616 (2016) Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles Axel U. J. Lode* and Christoph Bruder Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Received 29 April 2016; published 22 July 2016) We apply the multiconfigurational time-dependent Hartree method for indistinguishable particles (MCTDH-X) to systems of bosons or fermions in lattices described by Hubbard-type Hamiltonians with long-range or short-range interparticle interactions. The wave function is expanded in a variationally optimized time-dependent many-body basis generated by a set of effective creation operators that are related to the original particle creation operators by a time-dependent unitary transform.
    [Show full text]
  • Two Classes of Unconventional Photonic Crystals
    Two Classes of Unconventional Photonic Crystals by Y. D. Chong B.S. Physics Stanford University, 2003 SUBMITTED TO THE DEPARTMENT OF PHYSICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY AUGUST 2008 c 2008 Y. D. Chong. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: Department of Physics August 2008 Certified by: Marin Soljaˇci´c Assistant Professor of Physics Thesis Supervisor Accepted by: Professor Thomas J. Greytak Associate Department Head for Education Abstract This thesis concerns two classes of photonic crystal that differ from the usual solid-state dielectric photonic crystals studied in optical physics. The first class of unconventional photonic crystal consists of atoms bound in an optical lattice. This is a “resonant photonic crystal”, in which an underlying optical resonance modifies the usual band physics. I present a three-dimensional quantum mechanical model of exciton polaritons which describes this system. Amongst other things, the model explains the reason for the resonant enhancement of the photonic bandgap, which turns out to be related to the Purcell effect. An extension of this band theoretical approach is then used to study dark-state polaritons in Λ-type atomic media. The second class of unconventional photonic crystal consists of two di- mensional photonic crystals that break time-reversal symmetry due to a magneto-optic effect. The band theory for such systems involves topological quantities known as “Chern numbers”, which give rise to the phenomenon of disorder-immune one-way edge modes.
    [Show full text]
  • Physical Implementations of Quantum Computing
    Physical implementations of quantum computing Andrew Daley Department of Physics and Astronomy University of Pittsburgh Overview (Review) Introduction • DiVincenzo Criteria • Characterising coherence times Survey of possible qubits and implementations • Neutral atoms • Trapped ions • Colour centres (e.g., NV-centers in diamond) • Electron spins (e.g,. quantum dots) • Superconducting qubits (charge, phase, flux) • NMR • Optical qubits • Topological qubits Back to the DiVincenzo Criteria: Requirements for the implementation of quantum computation 1. A scalable physical system with well characterized qubits 1 | i 0 | i 2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩ 1 | i 0 | i 3. Long relevant decoherence times, much longer than the gate operation time 4. A “universal” set of quantum gates control target (single qubit rotations + C-Not / C-Phase / .... ) U U 5. A qubit-specific measurement capability D. P. DiVincenzo “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, p. 771 (2000) arXiv:quant-ph/0002077 Neutral atoms Advantages: • Production of large quantum registers • Massive parallelism in gate operations • Long coherence times (>20s) Difficulties: • Gates typically slower than other implementations (~ms for collisional gates) (Rydberg gates can be somewhat faster) • Individual addressing (but recently achieved) Quantum Register with neutral atoms in an optical lattice 0 1 | | Requirements: • Long lived storage of qubits • Addressing of individual qubits • Single and two-qubit gate operations • Array of singly occupied sites • Qubits encoded in long-lived internal states (alkali atoms - electronic states, e.g., hyperfine) • Single-qubit via laser/RF field coupling • Entanglement via Rydberg gates or via controlled collisions in a spin-dependent lattice Rb: Group II Atoms 87Sr (I=9/2): Extensively developed, 1 • P1 e.g., optical clocks 3 • Degenerate gases of Yb, Ca,..
    [Show full text]
  • Arxiv:1807.11342V2 [Cond-Mat.Quant-Gas] 4 Aug 2019
    A Dissipatively Stabilized Mott Insulator of Photons Ruichao Ma, Brendan Saxberg, Clai Owens, Nelson Leung, Yao Lu, Jonathan Simon, and David I. Schuster James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (Dated: August 6, 2019) Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions|properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for pho- tons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter. The richness of quantum materials originates from and the adiabatic criterion at the smallest many-body the competition between quantum fluctuations arising gaps, which shrink in the quantum critical region and from strong interactions, motional dynamics, and the often vanish at topological phase transitions.
    [Show full text]
  • A Mathematical Formulation of the Monte Carlo Method∗
    A Mathematical formulation of the Monte Carlo method∗ Hiroshi SUGITA Department of Mathematics, Graduate School of Science, Osaka University 1 Introduction Although admitting that the Monte Carlo method has been producing practical results in many fields, a number of researchers have the following serious suspicion about it. The Monte Carlo method needs random numbers. But since no computer program can generate them, we execute a Monte Carlo method using a pseu- dorandom number generated by a computer program. Of course, such an expedient can never have any mathematical justification. As a matter of fact, this suspicion is a misunderstanding caused by prejudice. In this article, we propose a proper mathematical formulation of the Monte Carlo method, which resolves this suspicion. The mathematical definitions of the notions of random number and pseudorandom number have been known for quite some time. Indeed, the notion of random number was defined in terms of computational complexity by Kolmogorov and others in 1960’s ([3, 4, 6]), while the notion of pseudorandom number was defined in the context of cryptography by Blum and others in 1980’s ([1, 2, 14]). But unfortunately, those definitions have been thought to be useless until now in understanding and executing the Monte Carlo method. It is not because their definitions are improper, but because our way of thinking about the Monte Carlo method has been improper. In this article, we propose a mathematical formulation of the Monte Carlo method which is based on and theoretically compatible with those definitions of random number and pseudorandom number. Under our formulation, as a result, we see the following.
    [Show full text]