Foundations and Trends R in sample Vol. xx, No xx (xxxx) 1{180 c xxxx xxxxxxxxx DOI: xxxxxx Pseudorandomness Salil P. Vadhan1 1 Harvard UniversityCambridge, MA02138, USA,
[email protected] Abstract Pseudorandomness is the theory of efficiently generating objects that \look random" despite being constructed using little or no randomness. This survey of the subject places particular emphasis on the intimate connections that have been discovered between a variety of fundamental \pseu- dorandom objects" that at first seem very different in nature: expander graphs, randomness ex- tractors, list-decodable error-correcting codes, samplers, and pseudorandom generators. The survey also illustrates the significance the theory of pseudorandomness has for the study of computational complexity, algorithms, cryptography, combinatorics, and communications. The structure of the presentation is meant to be suitable for teaching in a graduate-level course, with exercises accom- panying each chapter. To Kaya and Amari Acknowledgments My exploration of pseudorandomness began in my graduate and postdoctoral years at MIT and IAS, under the wonderful guidance of Oded Goldreich, Shafi Goldwasser, Madhu Sudan, and Avi Wigderson. It was initiated by an exciting reading group organized at MIT by Luca Trevisan, which immersed me in the subject and started my extensive collaboration with Luca. Through fortuitous circumstances, I also began to work with Omer Reingold, starting another lifelong collaboration. I am indebted to Oded, Shafi, Madhu, Avi, Luca, and Omer for all the insights and research experiences they have shared with me. I have also learned a great deal from my other collaborators on pseudorandomness, including Boaz Barak, Eli Ben-Sasson, Michael Capalbo, Kai-Min Chung, Nenad Dedic, Dan Gutfreund, Venkat Guruswami, Iftach Haitner, Alex Healy, Jesse Kamp, Danny Lewin, Shachar Lovett, Chi-Jen Lu, Michael Mitzenmacher, Shien Jin Ong, Michael Rabin, Anup Rao, Ran Raz, Leo Reyzin, Eyal Rozenman, Madhur Tulsiani, Chris Umans, Emanuele Viola, Hoeteck Wee, and David Zuckerman.