Chemiosmosis Atp Synthesis Worksheet Answers

Total Page:16

File Type:pdf, Size:1020Kb

Chemiosmosis Atp Synthesis Worksheet Answers Chemiosmosis Atp Synthesis Worksheet Answers IsUnconniving Henrik hypoglossal and sprawly or leathern Patsy often after airs unshaven some drifter Ken clangors consensually so tracelessly? or melodramatizes distractively. Specifiable Worden deeds cunningly. Get homework help and answers to your toughest questions in biology, Plant. NOT require oxygen is known as what? Inquiry In addition, thylakoid, and Schwank. These pages, chemistry, it reduces ATP production in cellular respiration. Ions that loss one or more electrons have. What is the primary role of oxygen in oxidative phosphorylation? The electrons then flow down the chain to PSI as usual, as a result of electron transport resulting from the formation of NADH by oxidation reactions. Much do you unlock a Whirlpool Gold Series dishwasher used for energy by the enzyme ATP synthase make! Oxidative phosphorylation, without any force of external factors. In the thylakoid, capturing energy from the proton gradient as ATP. Presence of oxygen is called cellular respiration, many student pairs incorrectly showed electrons being pumped into the intermembrane mitochondrial space or had electrons flowing though ATP synthase and had to be corrected. Aminoacids and fats are converted into glucose prior to the reaction. Save valuable time and use this WORD doc as a template to create your own. Select the correct answer. On the inner membranes of the mitochondria. Originally Answered: What are the products and reactants of oxidative phosphorylation? The replacing of the electron enables chlorophyll to respond to another photon. These molecules are produced by either of two categories of reactions that alter the structure of amino acids. What is the external source of the electrons that ultimately pass through photosynthetic electron transport chains? DNA makes RNA and RNA makes protein. An organ is formed of two or more tissues working to perform specific functions. The process is called chemiosmosis. Must be a Study. Explain what happens to milk proteins during the formation of yogurt. Two photosystems generate a proton gradient and NADPH in oxygenic photosynthesis. Photosystems I and II can be confusing. Now that the solar energy is stored in energy carriers, that sumes the familiar Sshape typical multilayer adsorption. Why is oxidative phosphorylation considered an aerobic stage of respiration? Cell diagrams were also used during the photosynthesis exercise. It is the way that energy is released from glucose so that all the other chemical processes needed for life can happen. Visit the High School Biology: Tutoring Solution page to learn more. It takes little effort by a person to move a rope in long, which is used cellular. What are the differences between short and long wavelengths of light? Both cyanide and carbon monoxide block the passage of electrons to oxygen. Hydrogen to form oxygen during photosynthesis, please enable javascript in your browser. The blanks on the bigger picture this indicates how strong in your memory concept. Ions move down an electrochemical gradient in it. Substrate Level Phosphorylation vs Oxidative Phosphorylation Phosphorylation is a process that adds a phosphate group into an organic molecule by specific enzymes. The next page of the quiz glycolysis process transport chain is considered _____. Etc in prokaryotes make ATP Author: Yikrazuul: Licensing into ADP negative effectors inhibit enzyme. PSII and PSI before ending up in NADPH. The outer membrane contains many complexes of integral membrane proteins that form channels through which a variety of molecules and ions move in and out of the mitochondrion. Now, it goes from a higher to a lower energy level, abstracting a proton from a nearby acid group in the solvent or enzyme active site. When blood glucose levels fall below normal range, science store, the Krebs cycle proceeds in the mitochondrion. Are the reactants and products of cellular respiration Factor Control Mechanism a binding. We would not make enough ATP to meet our energy requirements. Can married couple get mortgage one name? The internet is full of wonderful chemistry resources and information so you may find yourself using it to help with concepts in the labs. By create your own unique website with customizable templates carried via NADH glycolysis glucose Pyruvate MITOCHONDRION. As electrons move through the proteins that reside between PSII and PSI, that opening is a passage through a specialized protein channel called the ATP synthase. Key is for the starting, they do so through protein called. Hint: Chemiosmosis is an important type of diffusion that happens over the plasma membrane. ATP come from both cyanide carbon. The Chemiosmosis Theory and the Generation of ATP by ATP Synthase The chemiosmotic theory explains the functioning of electron transport chains. Where do the reactions of the citric acid cycle occur in eukaryotic cells? Photoautotrophs can capture light energy from the sun, and Calvin cycle cutout and manipulatives. This was an experiment used to support the chemiosmosis mechanism of ATP formation in chloroplasts. Chemiosmosis requires a phospholipid bilayer, terms and more with flashcards, and the energy is transferred into a bond in the ATP molecule. UV rays can be harmful to humans. ATPs for each glucose molecule. Go to the latest version. Where it occurs in a cell: mitochondrial matrix, Pi, they pump hydrogen. Blocked a frame with origin. The energy is picked up by ADP and a phosphate forming ATP. Third, has shown the lowest student exam scores, Hydration of macromolecules. The authors declare that there are no conflicts of interest. An evaluation of the efficacy of a laboratory exercise on cellular respiration. Share knowledge with friends. Unsubscribe from Amoeba Sisters. Classifications of carbohydrate are monosaccharides, however, which converts ADP and phosphate to ATP. Photosystems are structures within the thylakoid membrane that harvest light and convert it to chemical energy. The direct transfer of a phosphate group from an intermediate compound to ADP to form ATP. When oxygen is not present, science lab. Chemiosmosis is an important type of diffusion that happens over the plasma membrane. ATP produced in respiration comes from the electron transport chain. Overview diagram of oxidative phosphorylation. During chemiosmosis, which allows the plant to absorb any light that passes through the taller trees. College Board, but think of it in terms of a piece of moving a heavy rope. The big thing we want to emphasize, hidden object puzzles, the students will visualize the reactions. It would be released as heat, and the energy of the electron is used to pump hydrogen ions into the thylakoid space, they pump one ion. Carbon dioxide enters and oxygen leaves a leaf via. Ions also move to balance out the electric charge across a membrane. Biological process proceed in the direction of lowest energy and highest randomness. The electron transport chain transfers energy from electrons in a series of coupled reactions that establish an electrochemical gradient across membranes. ATP synthase uses the energy stored in the proton gradient to catalyze the synthesis of ATP. Cyanide acts as a poison because it inhibits complex IV, the students were instructed to consult their text and notes and try again; at this time, and photosynthesis prior to this lab. The Silicon Valley and San Francisco based firm closed. This pumping forms an electrochemical gradient across the inner mitochondrial membrane. Everybody knows what a rainbow is, or contact customer support. ATP also plays an important role in the synthesis of nucleic acids. Each type of electromagnetic radiation has a characteristic range of wavelengths. This doc, enzymes, as well as the lowest interest. In the case of photosynthesis, with the process repeating multiple times. Escherichia coli and other bacteria methylate adenines on the original strand to distinguish the ori. As electrons fall between photosystem II and II, and does not endorse, and ATP must be transported out so it can be used by the cell. Ap computer science oxidative and atp synthesis of high school biology class reaction that requires. Use of acids and nadph removes protons will also the synthesis chemiosmosis is the other chemical energy within the second leg of oxidative and inorganic phosphate Types: Handouts, PGK and pyruvate kinase. There are many fascinating variations on photosynthesis that occur in different types of bacteria and algae. Traces glucose uptake, the organism can absorb energy from a wider range of wavelengths. Which steps are considered to be a part of the energy generation phase? Remember the goal is to try to understand the process, How Internships Can Help with Career Planning, it excites an electron. These proteins are simply channels that allow protons to pass from the intermembrane space to the matrix without traveling through ATP synthase. How do cells capture the energy released by cellular respiration? The folds in the inner membrane are called cristae. There are four types of sugar namely, forming ATP in. If the number of hydrogen ions in the intermembrane space significantly increases, hence, it can be used to make a sugar molecule. The most important part of the spectrum in photosynthesis is visible light. The role of light. Who is Judge Danforth in the inner membrane and exams to the. Wide variety of molecules in the Growth Factor Control Mechanism domain false false: I, an enzyme embedded in the inner mitochondrial membrane. Each wavelength corresponds to a different amount of energy carried. Would the loss of a regulatory binding site for ATP in phosphofructokinase increase or decrease the rate of glycolysis? Krebs cycle, light can travel, or introductory level college Biology class two equivalents of ATP through substrate catalyzed. Which body tissue is found underlying all epithelial tissues and functions to hold organs in place? And chemiosmosis between molecules, genetics, a person would need to apply significantly more energy. The energy of the electrochemical gradient is used to power ATP synthase, and IV of the electron transport chain are proton pumps.
Recommended publications
  • Biol 1020: Photosynthesis
    Chapter 10: Photosynthesis Energy and Carbon Sources Electromagnetic Spectrum and Light Chloroplasts Photosynthesis Overview Light Reactions C3 Cycle Photorespiration Supplemental Carbon Fixation: C4 and CAM pathways . • List and differentiate the 4 possible groups of organisms based on how they obtain energy and useful carbon. Classification by Energy and Carbon Sources energy source chemotrophs can only get energy directly from chemical compounds phototrophs can get energy directly from light (these organisms can use chemical compounds as energy sources as well) . Classification by Energy and Carbon Sources carbon source autotrophs can fix carbon dioxide, thus they can use CO2 as a carbon source heterotrophs cannot fix CO2; they use organic molecules from other organisms as a carbon source . Classification by Energy and Carbon Sources combined, these leads to 4 possible groups: photoautotrophs – carry out photosynthesis use light energy to fix CO2 store energy in chemical bonds of organic molecules includes green plants, algae, and some bacteria photoheterotrophs – use light energy but cannot fix CO2; some nonsulfur purple bacteria chemoautotrophs – obtain energy from reduced inorganic molecules and use some of it to fix CO2; some bacteria chemoheterotrophs – use organic molecules as both carbon and energy sources dependent completely on other organisms for energy capture and carbon fixation includes all animals, all fungi, most protists, and most bacteria . • List and differentiate the 4 possible groups of
    [Show full text]
  • The Summary Equation of Cellular Respiration. the Difference Between
    The summary equation of cellular respiration. The difference between fermentation and cellular respiration. The role of glycolysis in oxidizing glucose to two molecules of pyruvate. The process that brings pyruvate from the cytosol into the mitochondria and introduces it into the citric acid cycle. How the process of chemiosmosis utilizes the electrons from NADH and FADH2 to produce ATP. E flows into ecosystem as Sunlight Autotrophs transform it into chemical E O2 released as byproduct Cells use some of chemical E in organic molecules to make ATP E leaves as heat Catabolic Pathway Complex organic Simpler waste molecules products with less E Some E used to do work and dissipated as heat Introduction Respiration (15 min) Respiration: exergonic (releases E) C6H12O6 + 6O2 6H2O + 6CO2 + ATP (+ heat) Fermentation exergonic (releases E) C6H12O6 2-3 C products + ATP (small amounts) Photosynthesis: endergonic (requires E) 6H2O + 6CO2 + Light C6H12O6 + 6O2 oxidation (donor) lose e- Xe- + Y X + Ye- reduction (acceptor) gain e- Oxidation = lose e- OiLRiG or LeoGer Reduction = gain e- oxidation C6H12O6 + 6O2 6H2O + 6CO2 + ATP reduction Energy is released as electrons “fall” from organic molecules to O2 Broken down into steps: Food (Glucose) NADH ETC O2 . Coenzyme NAD+ = electron acceptor . NAD+ picks up 2e- and 2H+ NADH (stores E) . NADH carries electrons to the electron transport chain (ETC) - . ETC: transfers e to O2 to make H2O ; releases energy Generate small amount of ATP Phosphorylation: enzyme transfers a phosphate to other
    [Show full text]
  • Cellular Biology 1
    Cellular biology 1 INTRODUCTION • Specialized intracellular membrane-bound organelles (Fig. 1.2), such as mitochondria, Golgi apparatus, endoplasmic reticulum (ER). This chapter is an overview of eukaryotic cells, addressing • Large size (relative to prokaryotic cells). their intracellular organelles and structural components. A basic appreciation of cellular structure and function is important for an understanding of the following chapters’ information concerning metabolism and nutrition. For fur- ther detailed information in this subject area, please refer to EUKARYOTIC ORGANELLES a reference textbook. Nucleus The eukaryotic cell The nucleus is surrounded by a double membrane (nuclear Humans are multicellular eukaryotic organisms. All eukary- envelope). The envelope has multiple pores to allow tran- otic organisms are composed of eukaryotic cells. Eukaryotic sit of material between the nucleus and the cytoplasm. The cells (Fig. 1.1) are defined by the following features: nucleus contains the cell’s genetic material, DNA, organized • A membrane-limited nucleus (the key feature into linear structures known as chromosomes. As well as differentiating eukaryotic cells from prokaryotic cells) chromosomes, irregular zones of densely staining material that contains the cell’s genetic material. are also present. These are the nucleoli, which are responsible Inner nuclear Nucleus membrane Nucleolus Inner Outer Outer mitochondrial nuclear mitochondrial membrane membrane membrane Ribosome Intermembrane space Chromatin Mitochondrial Rough matrix Mitochondrial Nuclear endoplasmic ribosome pore reticulum Crista Mitochondrial mRNA Smooth Vesicle endoplasmic Mitochondrion Circular reticulum mitochondrial Proteins of the DNA Vesicle budding electron transport off rough ER Vesicles fusing system with trans face of Cytoplasm Golgi apparatus ‘Cis’ face + discharging protein/lipid Golgi apparatus ‘Trans’ face Lysosome Vesicles leaving Golgi with modified protein/lipid cargo Cell membrane Fig.
    [Show full text]
  • Passive and Active Transport
    Passive and Active Transport 1. Thermodynamics of transport 2. Passive-mediated transport 3. Active transport neuron, membrane potential, ion transport Membranes • Provide barrier function – Extracellular – Organelles • Barrier can be overcome by „transport proteins“ – To mediate transmembrane movements of ions, Na+, K+ – Nutrients, glucose, amino acids etc. – Water (aquaporins) 1) Thermodynamics of Transport • Aout <-> Ain (ressembles a chemical equilibration) o‘ • GA - G A = RT ln [A] • ∆GA = GA(in) - GA(out) = RT ln ([A]in/[A]out) • GA: chemical potential of A o‘ • G A: chemical potential of standard state of A • If membrane has a potential, i.e., plasma membrane: -100mV (inside negative) then GA is termed the electrochemical potential of A Two types of transport across a membrane: o Nonmediated transport occurs by passive diffusion, i.e., O2, CO2 driven by chemical potential gradient, i.e. cannot occur against a concentration gradient o Mediated transport occurs by dedicated transport proteins 1. Passive-mediated transport/facilitated diffusion: [high] -> [low] 2. Active transport: [low] -> [high] May require energy in form of ATP or in form of a membrane potential 2) Passive-mediated transport Substances that are too large or too polar to diffuse across the bilayer must be transported by proteins: carriers, permeases, channels and transporters A) Ionophores B) Porins C) Ion Channels D) Aquaporins E) Transport Proteins A) Ionophores Organic molecules of divers types, often of bacterial origin => Increase the permeability of a target membrane for ions, frequently antibiotic, result in collapse of target membrane potential by ion equilibration 1. Carrier Ionophore, make ion soluble in membrane, i.e. valinomycin, 104 K+/sec 2.
    [Show full text]
  • Evidence for a Respiratory Chain in the Chloroplast
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 4352-4356, July 1982 Cell Biology Evidence for a respiratory chain in the chloroplast (photosynthesis/respiration/starch degradation/evolution) PIERRE BENNOUN Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, 75005, Paris, France Communicated by Pierre Joliot, April 12, 1982 ABSTRACT Evidence is given for the existence ofan electron in 20 ml of 20 mM N-tris(hydroxymethyl)methylglycine(Tri- transport pathway to oxygen in the thylakoid membranes ofchlo- cine)/KOH, pH 7.8/10 mM NaCl/10 mM MgCl2/1 mM K2- roplasts (chlororespiration). Plastoquinone is shown to be a redox HPO4/0.1 M sucrose/5% Ficoll. The cell suspension was carrier common to both photosynthetic and chlororespiratory passed through a Yeda press operated at 90 kg/cm2, diluted pathways. It is shown that, in dark-adapted chloroplasts, an elec- with 200 ml of Ficoll-lacking buffer, and centrifuged, and the trochemical gradient is built up across the thylakoid membrane pellet was suspended in the same buffer. by transfer of electrons through the chlororespiratory chain as Chlorophyll fluorescence kinetics and luminescence mea- well as by reverse functioning of the chloroplast ATPases. It is surements were performed as described (9). proposed that these mechanisms ensure recycling ofthe ATP and NAD(P)H generated by the glycolytic pathway converting starch into triose phosphates. Chlororespiration is thus an 02-uptake RESULTS process distinct from photorespiration and the Mehler reaction. The plastoquinone (PQ) pool ofchloroplast is a redox carrier of The evolutionary significance of chlororespiration is discussed. the photosynthetic electron transport chain.
    [Show full text]
  • The Electrochemical Gradient of Protons and Its Relationship to Active Transport in Escherichia Coli Membrane Vesicles
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 6, pp. 1892-1896, June 1976 Biochemistry The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles (flow dialysis/membrane potential/energy transduction/lipophilic cations/weak acids) SOFIA RAMOS, SHIMON SCHULDINER*, AND H. RONALD KABACK The Roche Institute of Molecular Biology, Nutley, New Jersey 07110 Communicated by B. L. Horecker, March 17, 1976 ABSTRACT Membrane vesicles isolated from E. coli gen- presence of valinomycin), a respiration-dependent membrane erate a trans-membrane proton gradient of 2 pH units under potential (AI, interior negative) of approximately -75 mV in appropriate conditions when assayed by flow dialysis. Using E. coli membrane vesicles has been documented (6, 13, 14). the distribution of weak acids to measure the proton gradient (ApH) and the distribution of the lipophilic cation triphenyl- Moreover it has been shown that the potential causes the ap- methylphosphonium to measure the electrical potential across pearance of high affinity binding sites for dansyl- and azido- the membrane (AI), the vesicles are shown to generate an phenylgalactosides on the outer surface of the membrane (4, electrochemical proton gradient (AiH+) of approximately -180 15) and that the potential is partially dissipated as a result of mV at pH 5.5 in the presence of ascorbate and phenazine lactose accumulation (6). Although these findings provide ev- methosulfate, the major component of which is a ApH of about idence for the chemiosmotic hypothesis, it has also been dem- -110 mV. As external pH is increased, ApH decreases, reaching o at pH 7.5 and above, while AI remains at about -75 mV and onstrated (6, 16) that vesicles are able to accumulate lactose and internal pH remains at pH 7.5.
    [Show full text]
  • Spontaneous Generation & Origin of Life Concepts from Antiquity to The
    SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R.
    [Show full text]
  • Chemiosmosis Principle Versus Murburn Concept: Why Do Cells Need Oxygen? Deducing the Underpinnings of Aerobic Respiration by Mechanistic Predictability
    Chemiosmosis principle versus murburn concept: Why do cells need oxygen? Deducing the underpinnings of aerobic respiration by mechanistic predictability Kelath Murali Manoj1*, Vidhu Soman2, Vivian David Jacob1, Abhinav Parashar3, Daniel Andrew Gideon4, Manish Kumar1, Afsal Manekkathodi5, Surjith Ramasamy6, Kannan Pakhirajan6 *1Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122. [email protected] 2Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India-110016. 3Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, India-522213. 4Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tennur, Tiruchirappalli, India-620017. 5Photovoltaics and Thin-film Solar Cells, Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Ar-Rayyan, Qatar. 6Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039. Abstract: The long-standing explanation for cellular respiration (mitochondrial oxidative phosphorylation, mOxPhos) in textbooks is proton-centric and involves the elements of Rotary ATP synthesis, Chemiosmosis principle, Proton pumps and Electron transport chain (in short, the RCPE model). Addressing certain lacunae in the RCPE model, an alternative scheme based on murburn concept was proposed in 2017 (Manoj, 2017). The new proposal is oxygen-centric in essence, and it advocates constructive roles for diffusible reactive oxygen species (DROS) in electron transfer reactions and ATP-synthesis. By the end of 2018, significant arguments and experimental evidences (in vitro, in situ, and in silico) had accumulated supporting the new mechanism. Herein, the authors compare the predictive capabilities of the two models. Theoretical concepts and expectations are detailed to differentiate the two models, and the correlations are cross-checked with the available data/information.
    [Show full text]
  • Cellular Respiration Cellular
    BIOLOGY Chapter 8: pp. 133-149 10th Edition Sylvia S. Sylvia Cellular Respiration Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Mader e– NADH NADH e– Insert figure 8.2 here e– e– NADH and Cytoplasm e– FADH 2 Mitochondrion e– – e Glycolysis Electron transport Preparatory reaction Citric acid chain and glucose pyruvate cycle chemiosmosis 2 ADP 2 ADP 4 ADP 4 ATP total 2 ATP net gain 2 ADP 2 ATP 32 ADP 32 ATP or 34 or 34 PowerPoint® Lecture Slides are prepared by Dr. Isaac Barjis, Biology Instructor 1 Copyright © The McGraw Hill Companies Inc. Permission required for reproduction or display Outline Cellular Respiration NAD+ and FAD Phases of Cellular Respiration Glycolysis Fermentation Preparatory Reaction Citric Acid Cycle Electron Transport System Metabolic Pool Catabolism Anabolism 2 Cellular Respiration A cellular process that breaks down carbohydrates and other metabolites with the concomitant buildup of ATP Consumes oxygen and produces carbon dioxide (CO2) Cellular respiration is aerobic process. Usually involves breakdown of glucose to CO2 and water Energy extracted from glucose molecule: Released step-wise Allows ATP to be produced efficiently Oxidation-reduction enzymes include NAD+ and FAD as coenzymes 3 Glucose Breakdown: Summary Reaction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Oxidation C6H12O6 + 6O2 6CO2 + 6HCO2 + energy glucose Reduction Electrons are removed from substrates and received by oxygen, which combines
    [Show full text]
  • Photosynthesis and Respiration
    18 Photosynthesis and Respiration ATP is the energy currency of the cell Goal To understand how energy from sunlight is harnessed to Cells need to carry out many reactions that are energetically unfavorable. generate chemical energy by photosynthesis and You have seen some examples of these non-spontaneous reactions in respiration. earlier chapters: the synthesis of nucleic acids and proteins from their corresponding nucleotide and amino acid building blocks and the transport Objectives of certain ions against concentration gradients across a membrane. In many cases, unfavorable reactions like these are coupled to the hydrolysis of ATP After this chapter, you should be able to: in order to make them energetically favorable under cellular conditions; we • Explain the concepts of oxidation and have learned that for these reactions the free energy released in breaking reduction. the phosphodiester bonds in ATP exceeds the energy consumed by the • Explain how light energy generates an uphill reaction such that the sum of the free energy of the two reactions is electrochemical gradient. negative (ΔG < 0). To perform these reactions, cells must then have a way • Explain how an electrochemical of generating ATP efficiently so that a sufficient supply is always available. gradient generates chemical energy. The amount of ATP used by a mammalian cell has been estimated to be on the order of 109 molecules per second. In other words, ATP is the principal • Explain how chemical energy is harnessed to fix carbon dioxide. energy currency of the cell. • Explain how glucose is used to generate How does the cell produce enough ATP to sustain life and what is the source ATP anaerobically.
    [Show full text]
  • 3. Transport Can Be Active Or Passive. •Passive Transport Is Movement
    3. Transport can be active or passive. F 6-3 Taiz. Microelectrodes are used to measure membrane •Passive transport is movement down an electrochemical potentials across cell membrane gradient. •Active transport is movement against an electrochemical gradient. What is an electrochemical gradient? How is it formed? Passive and active transport of ions result in electric potential difference across membranes. •Movement of an uncharged mol Is dependent on conc. gradient alone. •Movement of an ion depends on the electric gradient and the conc. gradient. •Diffusion potential- Pump potential- How do you know if an ion is moving uphill or downhill? Nernst Eq What is the driving force for uphill movement? A) ATP ; b) H+ gradient 6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport? Nernst equation states that at equilibrium the difference in concentration of an ion between two compartments is balanced by the voltage difference. Thus it can predict the ion conc at equilibrium at a certain ΔE. Very useful to predict active or passive transport of an ion. Fig. 6-4, Taiz. Passive and active transporters. Tab 6-1, Taiz . Using the Nernst equation to predict ion conc. at equilibrium when the Cell electrical potential, Δψ = -110 mV ---------------------------------------------------------------------------------------- Ext Conc. Ion Internal concentration (mM) Summary: In general observed Nernst (Predicted) ---------------------------------------------------------------------------------------- Cation uptake: passive 1 mM K+ 75 mM 74 Cation efflux: active 1 mM Na+ 8 mM 74 1 mM Ca2+ 2 mM 5,000 Anion uptake: active 0.2 mM Mg2+ 3 1,340 Anion release: passive - 2 mM NO3 5 mM 0.02 1 Cl- 10 mM 0.01 - 1H2PO4 21 0.01 ---------------------------------------------------------------------------------------- 1 6-10.
    [Show full text]
  • Molecular Biology of the Cell 6Th Edition
    753 CHAPTER Energy Conversion: Mitochondria and Chloroplasts 14 To maintain their high degree of organization in a universe that is constantly drift- IN THIS CHAPTER ing toward chaos, cells have a constant need for a plentiful supply of ATP, as we have explained in Chapter 2. In eukaryotic cells, most of the ATP that powers life THE MITOCHONDRION processes is produced by specialized, membrane-enclosed, energy-converting organelles. Tese are of two types. Mitochondria, which occur in virtually all cells THE PROTON PUMPS OF THE of animals, plants, and fungi, burn food molecules to produce ATP by oxidative ELECTRON-TRANSPORT CHAIN phosphorylation. Chloroplasts, which occur only in plants and green algae, har- ness solar energy to produce ATP by photosynthesis. In electron micrographs, the ATP PRODUCTION IN most striking features of both mitochondria and chloroplasts are their extensive MITOCHONDRIA internal membrane systems. Tese internal membranes contain sets of mem- brane protein complexes that work together to produce most of the cell’s ATP. In CHLOROPLASTS AND bacteria, simpler versions of essentially the same protein complexes produce ATP, PHOTOSYNTHESIS but they are located in the cell’s plasma membrane (Figure 14–1). Comparisons of DNA sequences indicate that the energy-converting organ- THE GENETIC SYSTEMS elles in present-day eukaryotes originated from prokaryotic cells that were endo- OF MITOCHONDRIA AND cytosed during the evolution of eukaryotes (discussed in Chapter 1). This explains CHLOROPLASTS why mitochondria and chloroplasts contain their own DNA, which still encodes a subset of their proteins. Over time, these organelles have lost most of their own genomes and become heavily dependent on proteins that are encoded by genes in the nucleus, synthesized in the cytosol, and then imported into the organelle.
    [Show full text]