Carbon Assimilation, Biomass Partitioning and Productivity in Grasses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biomass Accumulation and Partitioning of Tomato Under Protected Cultivation in the Humid Tropics
Europ.J.Hort.Sci., 71 (4). S. 173–182, 2006, ISSN 1611-4426. © Verlag Eugen Ulmer KG, Stuttgart Biomass Accumulation and Partitioning of Tomato under Protected Cultivation in the Humid Tropics V. Kleinhenz1), K. Katroschan1), F. Schütt1) and H. Stützel2) (1)Asian Institute of Technology, ASE/SERD, Klong Luang, Thailand and 2) Hanover University, Faculty of Horticulture, Institute of Vegetable Production, Hanover, Germany) Summary Results of a 2-year structural analysis of indeterminate sink strength resulting from poor fruit set were de- tomato (Lycopersicon esculentum Mill.) cultivated dur- formed leaves and accelerated growth of auxiliary ing different seasons under protected cultivation (ven- shoots. When canopy density was increased by culti- tilated greenhouses with PE-film roofs and PE-net vating tomato with double stems, total fruit biomass walls) in the humid tropics of Central Thailand are per plant was significantly improved by ca. 13 %. presented. Under the prevailing high-radiation condi- Within these plants, ca. 100 % more biomass was par- tions (ø 35.9 MJ m–2 outside and 23.7 MJ m–2 inside titioned into fruits of the primary stem than the sec- of the greenhouse), total dry-mass production was ondary stem. Since leaf biomass and area did not vary 2.6 g MJ–1 and similar to regions at greater latitude significantly between individual stems, there was indi- with much lower global radiation. Plant density cation that secondary stems improved availability of (2.1 plants m–2 in single rows vs. 4.2 plants m–2 in assimilates which promoted biomass partitioning into double rows) had no meaningful effect on biomass fruits on primary stems. -
Data Assimilation and Uncertainty Quantification in Cardiovascular Biomechanics Rajnesh Lal
Data assimilation and uncertainty quantification in cardiovascular biomechanics Rajnesh Lal To cite this version: Rajnesh Lal. Data assimilation and uncertainty quantification in cardiovascular biomechanics. Mod- eling and Simulation. Université Montpellier, 2017. English. NNT : 2017MONTS088. tel-02081644 HAL Id: tel-02081644 https://tel.archives-ouvertes.fr/tel-02081644 Submitted on 27 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Montpellier Préparée au sein de l’école doctorale I2S Et de l’unité de recherche IMAG Spécialité : Mathématiques et Modélisation Présentée par Rajnesh Lal Data assimilation and uncertainty quantification in cardiovascular biomechanics Soutenue le 14 Juin 2017 devant le jury composé de Pr. Franck Nicoud IMAG - Univ. de Montpellier Directeur Pr. Bijan Mohammadi IMAG - Univ. de Montpellier Co-Directeur Dr. Jean-Frédéric Gerbeau INRIA Paris - Rocquencourt Rapporteur Dr. Pierre-Yves Lagrée Université Pierre et Marie Curie Rapporteur PUPH. Vincent Costalat CHRU - Gui de Chauliac, Montpellier Examinateur Pr. Christophe Prud’homme IRMA - Université de Strasbourg Examinateur Abstract Cardiovascular blood flow simulations can fill several critical gaps in current clinical capabilities. ey offer non-invasive ways to quantify hemodynamics in the heart and major blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from medical imaging. -
Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation Into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N
plants Review Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N Tadakatsu Yoneyama 1,* and Akira Suzuki 2,* 1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 2 Institut Jean-Pierre Bourgin, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), UMR1318, RD10, F-78026 Versailles, France * Correspondence: [email protected] (T.Y.); [email protected] (A.S.) Received: 3 September 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs. -
Carbon Assimilation and Carbohydrate Metabolism of ‘Concordʼ Grape (Vitis Labrusca L.) Leaves in Response to Nitrogen Supply
J. AMER. SOC. HORT. SCI. 128(5):754–760. 2003. Carbon Assimilation and Carbohydrate Metabolism of ‘Concordʼ Grape (Vitis labrusca L.) Leaves in Response to Nitrogen Supply Li-Song Chen1 and Lailiang Cheng2 Department of Horticulture, Cornell University, Ithaca, NY14853 ADDITIONAL INDEX WORDS. ADP-glucose pyrophosphorylase, fructose-1,6-bisphosphatase, metabolites, NADP-glyceral- dehyde-3-phosphate dehydrogenase, phosphoribulokinase, ribulose-1,5-bisphosphate carboxylase/oxygenase, sucrose phosphate synthase ABSTRACT. One-year-old grapevines (Vitis labrusca L. ‘Concordʼ) were supplied twice weekly for 5 weeks with 0, 5, 10, 15, or 20 mM nitrogen (N) in a modifi ed Hoaglandʼs solution to generate a wide range of leaf N status. Both light-saturated CO2 assimilation at ambient CO2 and at saturating CO2 increased curvilinearly as leaf N increased. Although stoma- tal conductance showed a similar response to leaf N as CO2 assimilation, calculated intercellular CO2 concentrations decreased. On a leaf area basis, activities of key enzymes in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), and key enzymes in sucrose and starch synthesis, fructose-1,6-bisphosphatase (FBPase), sucrose phosphate synthase (SPS), and ADP-glucose pyrophosphorylase (AGPase), increased linearly with increasing leaf N content. When expressed on a leaf N basis, activities of the Calvin cycle enzymes increased with increasing leaf N, whereas activities of FBPase, SPS, and AGPase did not show signifi cant change. As leaf N increased, concentrations of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and 3-phosphoglycerate (PGA) increased curvilinearly. The ratio of G6P/F6P remained unchanged over the leaf N range except for a signifi cant drop at the lowest leaf N. -
Feeding, Digestion and Assimilation in Animals Macmillan Studies in Comparative Zoology
Feeding, Digestion and Assimilation in Animals Macmillan Studies in Comparative Zoology General Editors: J. B. Jennings and P. J. Mill, University of Leeds Each book in this series will discuss an aspect of modern zoology in a broad comparative fashion. In an age of increasing specialisation the editors feel that by illustrating the relevance of zoological principles in a general context this approach has an important role to play. As well as using a wide range of representative examples, each book will also deal with its subject from a number of different viewpoints, drawing its evidence from morphology, physiology and biochemistry. In this way the student can build up a complete picture of a particular zoological feature or process and gain an idea of its significance in a wide range of animals. Feeding, Digestion and Assimilation in Animals J. B. JENNINGS Reader in Invertebrate Zoology, The University of Leeds MACMILLAN EDUCATION © J. B. Jennings 1965, 1972 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission First published 1965 by The Pergamon Press Second edition 1972 Published by THE MACMILLAN PRESS LTD London and Basingstoke Associated companies in New rork Toronto Melbourne Dublin Johannesburg and Madras SBN 333 13391 9 (board) 333 13622 5 (paper) ISBN 978-0-333-13622-5 ISBN 978-1-349-15482-1 (eBook) DOI 10.1007/978-1-349-15482-1 Library of Congress catalog card number 72-90021 Preface THIS book is intended as a general introduction to the study of animal nutrition. -
Does Mycorrhizal Status Alter Herbivore-Induced Changes in Whole-Plant Resource Partitioning?
Research Article Does mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning? Colin M. Orians*, Sara Gomez and Timothy Korpita Department of Biology, Tufts University, 200 College Ave, Medford, MA 02155, USA Received: 12 June 2017 Editorial decision: 21 November 2017 Accepted: 7 December 2017 Published: 15 December 2017 Associate Editor: Karina Boege Citation: Orians CM, Gomez S, Korpita T. 2018. Does mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning? AoB PLANTS 10: plx071; doi: 10.1093/aobpla/plx071 Abstract. Both mycorrhizae and herbivore damage cause rapid changes in source–sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to herbivory might depend on the presence or absence of mycorrhizae. We examined the effects of mycorrhizal presence on induced resource partitioning in tomato (Solanum lycopersicon) in response to cues from a specialist herbivore Manduca sexta. Differences in plant size, growth and in the concentrations of carbon-based (soluble sugars and starch) and nitrogen-based (protein and total nitrogen) resources in three tissue types (apex, stem and roots) were quantified. Both mycorrhizae and simulated herbivory altered the concentrations of carbon- and nitrogen-based resources. Mycorrhizae promoted plant growth, altered sugar and starch levels. Simulated herbivory resulted in lower concen- trations of most resources (sugar, starch and protein) in the rapidly growing apex tissue, while causing an increase in stem protein. There was only one interactive effect; the effects of simulated herbivory were much stronger on the sugar concentration in the apex of non-mycorrhizal plants. -
Impact of Water Stress Under Ambient and Elevated Carbon Dioxide Across Three Temperature Regimes on Soybean Canopy Gas Exchange and Productivity Shardendu K
www.nature.com/scientificreports OPEN Impact of water stress under ambient and elevated carbon dioxide across three temperature regimes on soybean canopy gas exchange and productivity Shardendu K. Singh1,3*, Vangimalla R. Reddy1, Mura Jyostna Devi1,2* & Dennis J. Timlin1 The present study investigated the interactive efects of three environmental stress factors elevated CO2, temperature, and drought stress on soybean growth and yield. Experiments were conducted in the sunlit, controlled environment Soil–Plant–Atmosphere–Research chambers under two-level of −1 irrigation (WW-well water and WS-water stress-35%WW) and CO2 (aCO2-ambient 400 µmol mol and −1 eCO2-elevated 800 µmol mol ) and each at the three day/night temperature regimes of 24/18 °C (MLT- moderately low), 28/22 °C (OT-optimum), and 32/26 °C (MHT-moderately high). Results showed the greatest negative impact of WS on plant traits such as canopy photosynthesis (PCnet), total dry weight (TDwt), and seed yield. The decreases in these traits under WS ranged between 40 and 70% averaged across temperature regimes with a greater detrimental impact in plants grown under aCO2 than eCO2. The MHT had an increased PCnet, TDwt, and seed yield primarily under eCO2, with a greater increase under WW than WS conditions. The eCO2 stimulated PCnet, TDwt, and seed yield more under WS than WW. For instance, on average across T regimes, eCO2 stimulated around 25% and 90% dry mass under WW and WS, respectively, relative to aCO2. Overall, eCO2 appears to beneft soybean productivity, at least partially, under WS and the moderately warmer temperature of this study. -
Chapter 12 Assimilation of Mineral Nutrients
Chapter 12 Assimilation of Mineral Nutrients BIOL 5130/6130 Bob Locy Auburn University Chapter 12.01. Introduction - 01 Chapter 12.02. Nitrogen in the Environment - 02 02.01. Nitrogen passes through several forms in a biogeochemical cycle Chapter 12.02. Nitrogen in the Environment - 03 02.02. Unassimilated ammonium or nitrate may be dangerous – Although nitrate and ammonium are preferred nitrogen sources to support plant growth and development, both substances can be toxic at highlevels. – Ammonium ion dissipates the proton gradient – Nitrate can geneate toxic biproducts. Chapter 12.03. Nitrate Assimilation - 04 - + - + NO3 + NAD(P)H + H NO2 + NAD(P) + H20 03.01a. Many factors regulate nitrate reductase – Tight control of NR activity is required to keep toxic levels of nitrite from accumulating in cells – The induction of nitrate reductase activity is regulated transcriptionally by the control of NR mRNA levels. Chapter 12.03. Nitrate Assimilation - 05 03.01b. Many factors regulate nitrate reductase – Nitrate reductase activity is also regulated posttranslationally by a number of physiological parameters. – This control involves activating 14-3-3 protein, and phosphorylation of a serine residue in the hinge region of the protein between the MoCo and the heme. – Phosphorylation activates and dephosphorylation inhibits NR activity. Chapter 12.03. Nitrate Assimilation - 06 03.02. Nitrite reductase converts nitrite to ammonium - + + NO2 + 6 Fdred + 8 H NH4 + 6 Fdox + 2H20 – Nitrite derived from nitrate reductase is immediately taken up by choroplasts (in leaves) or plastids (in roots), where it is reduced to amonia by nitrite reductase (Nit) Chapter 12.03. Nitrate Assimilation - 07 03.03. Both roots and shoots assimilate nitrate – Varies from one species to another – GENERALLY – temperate species are root assimilators, tropical species are leaf assimilators Chapter 12.04. -
How Does Biomass Distribution Change with Size and Differ Among Species? an Analysis for 1200 Plant Species from Five Continents
Research How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents Hendrik Poorter1, Andrzej M. Jagodzinski2,3, Ricardo Ruiz-Peinado4,5, Shem Kuyah6, Yunjian Luo7,8, Jacek Oleksyn2,9, Vladimir A. Usoltsev10,11, Thomas N. Buckley12, Peter B. Reich9,13 and Lawren Sack14 1Plant Sciences (IBG-2), Forschungszentrum Julich€ GmbH, D-52425 Julich,€ Germany; 2Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kornik PL-62-035, Poland; 3Department of Game Management and Forest Protection, Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71c, Poznan PL-60-625, Poland; 4Departamento de Selvicultura y Gestion de Sistemas Forestales, INIA-CIFOR, Avda. A Coruna,~ km 7.5., Madrid 28040, Spain; 5Sustainable Forest Management Research Institute, University of Valladolid- INIA, Madrid, Spain; 6Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000, Nairobi 00200, Kenya; 7Department of Ecology, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; 8State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; 9Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave N, St Paul, MN 55108, USA; 10Ural State Forest Engineering University, Sibirskiy Trakt 37, Ekaterinburg 620100, Russia; 11Botanical Garden of Ural Branch of Russian Academy of Sciences, ul. Vos’mogo Marta 202a, Ekaterinburg 620144, Russia; 12IA Watson Grains Research Centre, Faculty of Agriculture and Environment, The University of Sydney, 12656 Newell Highway, Narrabri, NSW, Australia; 13Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia; 14Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. -
Effects of Nitrogen Deficiency on Leaf Photosynthesis, Carbohydrate Status and Biomass Production in Two Olive Cultivars
Scientia Horticulturae 123 (2010) 336–342 Contents lists available at ScienceDirect Scientia Horticulturae journal homepage: www.elsevier.com/locate/scihorti Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’ O. Boussadia a,*, K. Steppe b, H. Zgallai d, S. Ben El Hadj c, M. Braham a, R. Lemeur b, M.C. Van Labeke e a Institute of the Olive Tree Station of Sousse, 40 Rue Ibn Khouldoun, 4061 Sousse, Tunisia b Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium c Agronomic National Institute of Tunisia, 43 Avenue Charlnicol, 1082 cite´ El Mahrajen Tunisia d Bayer BioScience N.V. Nazarethsesteenweg 77, B-9800 Astene (Deinze) Belgium e Faculty of Bioscience Engineering, Department of Plant Production, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium ARTICLE INFO ABSTRACT Article history: The effects of nitrogen deficiency on CO2 assimilation, carbohydrate content and biomass were studied in Received 9 February 2009 two olive (Olea europaea L.) cultivars (‘Meski’ and ‘Koroneiki’). One-year-old plants were grown in pots Received in revised form 23 September 2009 and subjected to four nitrogen levels for 58 days. Accepted 29 September 2009 Nitrogen-deficient plants had significant lower leaf nitrogen and chlorophyll a contents. They also showed a significant reduction in their photosynthetic capacity. A tolerance difference between cultivars Keywords: was observed: ‘Meski’ proved to be more efficient in maintaining CO2 assimilation rates than ‘Koroneiki’ Carbohydrate under nitrogen deficiency, which was reflected by increased photosynthetic nitrogen use efficiency. Nitrogen deficiency Accumulation of carbohydrates, especially starch, mannitol, sucrose and glucose, was observed in Olive tree Photosynthesis nitrogen-deficient leaves. -
A Data Assimilative Marine Ecosystem Model of the Central Equatorial Pacific
Journalof MarineResearch, 59, 859– 894,2001 Adataassimilative marineecosystem modelof the central equatorialPaci c: Numerical twinexperiments byMarjorieA. M.Friedrichs 1 ABSTRACT Ave-component,data assimilative marine ecosystem model is developed for the high-nutrient low-chlorophyllregion of thecentral equatorial Paci c (0N,140W). Identical twin experiments, in whichmodel-generated synthetic ‘ data’are assimilated into the model, are employed to determine thefeasibility of improving simulation skill by assimilating in situ cruisedata (plankton, nutrients andprimary production) and remotely-sensed ocean color data. Simple data assimilative schemes suchas data insertion or nudging may be insuf cient for lower trophic level marine ecosystem models,since they require long time-series of daily to weekly plankton and nutrient data as wellas adequateknowledge of the governing ecosystem parameters. In contrast, the variational adjoint technique,which minimizes model-data mis ts byoptimizingtunable ecosystem parameters, holds muchpromise for assimilating biological data into marine ecosystem models. Using sampling strategiestypical of those employed during the U.S. JointGlobal Flux Study (JGOFS) equatorial Pacic processstudy and the remotely-sensed ocean color data available from the Sea-viewing Wide Field-of-viewSensor (SeaWiFS), parameters that characterize processes such as growth, grazing, mortality,and recycling can be estimated. Simulation skill is improved even if synthetic data associatedwith 40% random noise are assimilated; however, the presence of biases of 10 – 20% provesto be more detrimental to the assimilation results. Although increasing the length of the assimilatedtime series improves simulation skill if randomerrors are present in the data, simulation skillmay deterior ateas more biased data are assimilat ed.As biologic aldatasets, includin g in situ, satelliteand acoustic sources, continue to grow, data assimilat ivebiologic al-physical modelswill play an increasin glycrucial role in large interdis ciplinaryoceanogr aphicobserva- tionalprograms . -
Textbook-Sample.Pdf
Table of Contents Introduction ix How to Use This Book xix Additional Resources xxiii Part I: Latin Chapter I: Latin Prefixes 1 1 Chapter II: Latin Prefixes 2 13 Chapter III: Latin Numerical Prefixes 25 Review I 36 Chapter IV: Latin Suffixes 1 40 Chapter V: Latin Suffixes 2 51 Chapter VI: Latin Suffixes 3 62 Review II 72 Chapter VII: Latin Suffixes 4 76 Chapter VIII: Latin Suffixes 5 86 Chapter IX: Latin Suffixes 6 98 Chapter X: Other Latin Prefixes and Suffixes 110 Review III 122 Chapter XI: Latin Nouns 1 126 Chapter XII: Latin Nouns 2 142 Chapter XIII: Latin Adjectives 1 154 Chapter XIV: Latin Adjectives 2 169 Review IV 183 vii McKeownSmithHippCode_00bk.indb 7 2/8/16 2:17 PM Table of Contents Part II: Greek Chapter XV: The Greek Alphabet 187 Chapter XVI: Greek Prefixes 1 198 Chapter XVII: Greek Prefixes 2 209 Chapter XVIII: Greek Numerical and Other Prefixes 220 Review V 231 Chapter XIX: Greek Suffixes 1 235 Chapter XX: Greek Suffixes 2 245 Chapter XXI: Greek Suffixes 3 255 Review VI 266 Chapter XXII: Greek Compound Suffixes 1 270 Chapter XXIII: Greek Compound Suffixes 2 280 Chapter XXIV: Greek Compound Suffixes 3 290 Review VII 301 Part III: Other Types of Construction Chapter XXV: Bilingual Words 305 Chapter XXVI: Special Derivations 316 Chapter XXVII: Mythological Eponyms 328 Chapter XXVIII: Historical Eponyms 338 Review VIII 350 Appendix Map 355 Chronological Table 356 Glossary of Proper Names 358 Index of Word Elements 362 Know Yourself Topics 367 Medicine in Antiquity Topics 367 Coins and Other Images 368 Image Credits 370 viii McKeownSmithHippCode_00bk.indb 8 2/8/16 2:17 PM Introduction Aristotle was the first to undertake the task of teaching and writing about the external parts and sections of the body and to discuss their names.