Department Newsletter Spring 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tarjan Transcript Final with Timestamps
A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated. -
1. Course Information Are Handed Out
6.826—Principles of Computer Systems 2006 6.826—Principles of Computer Systems 2006 course secretary's desk. They normally cover the material discussed in class during the week they 1. Course Information are handed out. Delayed submission of the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM. Students in the class will be asked to help grade the problem sets. Each week a team of students Staff will work with the TA to grade the week’s problems. This takes about 3-4 hours. Each student will probably only have to do it once during the term. Faculty We will try to return the graded problem sets, with solutions, within a week after their due date. Butler Lampson 32-G924 425-703-5925 [email protected] Policy on collaboration Daniel Jackson 32-G704 8-8471 [email protected] We encourage discussion of the issues in the lectures, readings, and problem sets. However, if Teaching Assistant you collaborate on problem sets, you must tell us who your collaborators are. And in any case, you must write up all solutions on your own. David Shin [email protected] Project Course Secretary During the last half of the course there is a project in which students will work in groups of three Maria Rebelo 32-G715 3-5895 [email protected] or so to apply the methods of the course to their own research projects. Each group will pick a Office Hours real system, preferably one that some member of the group is actually working on but possibly one from a published paper or from someone else’s research, and write: Messrs. -
Qualitative and Quantitative Security Analyses for Zigbee Wireless Sensor Networks
Downloaded from orbit.dtu.dk on: Sep 27, 2018 Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Yuksel, E., Nielson, H. R., & Nielson, F. (2011). Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2011; No. 247). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks Ender Y¨uksel Kongens Lyngby 2011 IMM-PHD-2011-247 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk IMM-PHD: ISSN 0909-3192 Summary Wireless sensor networking is a challenging and emerging technology that will soon become an inevitable part of our modern society. -
FOCS 2005 Program SUNDAY October 23, 2005
FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H. -
Hierarchical Clustering with Global Objectives: Approximation Algorithms and Hardness Results
HIERARCHICAL CLUSTERING WITH GLOBAL OBJECTIVES: APPROXIMATION ALGORITHMS AND HARDNESS RESULTS ADISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Evangelos Chatziafratis June 2020 © 2020 by Evangelos Chatziafratis. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/bb164pj1759 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Tim Roughgarden, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Moses Charikar, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Li-Yang Tan I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Gregory Valiant Approved for the Stanford University Committee on Graduate Studies. Stacey F. Bent, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. -
Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today. -
The Growth of Cryptography
The growth of cryptography Ronald L. Rivest Viterbi Professor of EECS MIT, Cambridge, MA James R. Killian Jr. Faculty Achievement Award Lecture February 8, 2011 Outline Some pre-1976 context Invention of Public-Key Crypto and RSA Early steps The cryptography business Crypto policy Attacks More New Directions What Next? Conclusion and Acknowledgments Outline Some pre-1976 context Invention of Public-Key Crypto and RSA Early steps The cryptography business Crypto policy Attacks More New Directions What Next? Conclusion and Acknowledgments The greatest common divisor of two numbers is easily computed (using “Euclid’s Algorithm”): gcd(12; 30) = 6 Euclid – 300 B.C. There are infinitely many primes: 2, 3, 5, 7, 11, 13, . Euclid – 300 B.C. There are infinitely many primes: 2, 3, 5, 7, 11, 13, . The greatest common divisor of two numbers is easily computed (using “Euclid’s Algorithm”): gcd(12; 30) = 6 Greek Cryptography – The Scytale An unknown period (the circumference of the scytale) is the secret key, shared by sender and receiver. Euler’s Theorem (1736): If gcd(a; n) = 1, then aφ(n) = 1 (mod n) ; where φ(n) = # of x < n such that gcd(x; n) = 1. Pierre de Fermat (1601-1665) Leonhard Euler (1707–1783) Fermat’s Little Theorem (1640): For any prime p and any a, 1 ≤ a < p: ap−1 = 1 (mod p) Pierre de Fermat (1601-1665) Leonhard Euler (1707–1783) Fermat’s Little Theorem (1640): For any prime p and any a, 1 ≤ a < p: ap−1 = 1 (mod p) Euler’s Theorem (1736): If gcd(a; n) = 1, then aφ(n) = 1 (mod n) ; where φ(n) = # of x < n such that gcd(x; n) = 1. -
Curriculum Vitae
Massachusetts Institute of Technology School of Engineering Faculty Personnel Record Date: April 1, 2020 Full Name: Charles E. Leiserson Department: Electrical Engineering and Computer Science 1. Date of Birth November 10, 1953 2. Citizenship U.S.A. 3. Education School Degree Date Yale University B. S. (cum laude) May 1975 Carnegie-Mellon University Ph.D. Dec. 1981 4. Title of Thesis for Most Advanced Degree Area-Efficient VLSI Computation 5. Principal Fields of Interest Analysis of algorithms Caching Compilers and runtime systems Computer chess Computer-aided design Computer network architecture Digital hardware and computing machinery Distance education and interaction Fast artificial intelligence Leadership skills for engineering and science faculty Multicore computing Parallel algorithms, architectures, and languages Parallel and distributed computing Performance engineering Scalable computing systems Software performance engineering Supercomputing Theoretical computer science MIT School of Engineering Faculty Personnel Record — Charles E. Leiserson 2 6. Non-MIT Experience Position Date Founder, Chairman of the Board, and Chief Technology Officer, Cilk Arts, 2006 – 2009 Burlington, Massachusetts Director of System Architecture, Akamai Technologies, Cambridge, 1999 – 2001 Massachusetts Shaw Visiting Professor, National University of Singapore, Republic of 1995 – 1996 Singapore Network Architect for Connection Machine Model CM-5 Supercomputer, 1989 – 1990 Thinking Machines Programmer, Computervision Corporation, Bedford, Massachusetts 1975 -
The RSA Algorithm
The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau of Standards (NBS) algorithm. Most impor- tantly, RSA implements a public-key cryptosystem, as well as digital signatures. RSA is motivated by the published works of Diffie and Hellman from several years before, who described the idea of such an algorithm, but never truly developed it. Introduced at the time when the era of electronic email was expected to soon arise, RSA implemented two important ideas: 1. Public-key encryption. This idea omits the need for a \courier" to deliver keys to recipients over another secure channel before transmitting the originally-intended message. In RSA, encryption keys are public, while the decryption keys are not, so only the person with the correct decryption key can decipher an encrypted message. Everyone has their own encryption and decryption keys. The keys must be made in such a way that the decryption key may not be easily deduced from the public encryption key. 2. Digital signatures. The receiver may need to verify that a transmitted message actually origi- nated from the sender (signature), and didn't just come from there (authentication). This is done using the sender's decryption key, and the signature can later be verified by anyone, using the corresponding public encryption key. Signatures therefore cannot be forged. Also, no signer can later deny having signed the message. This is not only useful for electronic mail, but for other electronic transactions and transmissions, such as fund transfers. -
Finding Rising Stars in Co-Author Networks Via Weighted Mutual Influence
Finding Rising Stars in Co-Author Networks via Weighted Mutual Influence Ali Daud a,b Naif Radi Aljohani a Rabeeh Ayaz Abbasi a,c a Faculty of Computing and a Faculty of Computing and c Department of Computer Science, Information Technology, King Information Technology, King Quaid-i-Azam University, Islamabad, Abdulaziz University, Jeddah, Saudi Abdulaziz University, Jeddah, Saudi Pakistan Arabia Arabia [email protected] [email protected] [email protected] b b d Zahid Rafique Tehmina Amjad Hussain Dawood b Department of Computer Science b Department of Computer Science d Faculty of Computing and and Software Engineering, and Software Engineering, Information Technology, University International Islamic University, International Islamic University, of Jeddah, Jeddah, Saudi Arabia Islamabad, Pakistan Islamabad, Pakistan [email protected] [email protected] [email protected] a Khaled H. Alyoubi a Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia [email protected] ABSTRACT KEYWORDS Finding rising stars is a challenging and interesting task which is Bibliographic databases; Citations; Author Order; Rising Stars; Mutual being investigated recently in co-author networks. Rising stars are Influence; Co-Author Networks authors who have a low research profile in the start of their career but may become experts in the future. This paper introduces a new method Weighted Mutual Influence Rank (WMIRank) for finding 1. INTRODUCTION rising stars. WMIRank exploits influence of co-authors’ citations, The rapid evolution of scientific research has created large order of appearance and publication venues. Comprehensive volumes of publications every year, and is expected to continue in experiments are performed to analyze the performance of near future [21]. -
Moshe Y. Vardi
MOSHE Y. VARDI Address Office Home Department of Computer Science 4515 Merrie Lane Rice University Bellaire, TX 77401 P.O.Box 1892 Houston, TX 77251-1892 Tel: (713) 348-5977 Tel: (713) 665-5900 Fax: (713) 348-5930 Fax: (713) 665-5900 E-mail: [email protected] URL: http://www.cs.rice.edu/∼vardi Research Interests Applications of logic to computer science: • database systems • complexity theory • multi-agent systems • specification and verification of hardware and software Education Sept. 1974 B.Sc. in Physics and Computer Science (Summa cum Laude), Bar-Ilan University, Ramat Gan, Israel May 1980 M.Sc. in Computer Science, The Feinberg Graduate School, The Weizmann Insti- tute of Science, Rehovoth, Israel Thesis: Axiomatization of Functional and Join Dependencies in the Relational Model. Advisors: Prof. C. Beeri (Hebrew University) Prof. P. Rabinowitz Sept 1981 Ph.D. in Computer Science, Hebrew University, Jerusalem, Israel Thesis: The Implication Problem for Data Dependencies in the Relational Model. Advisor: Prof. C. Beeri Professional Experience Nov. 1972 – June 1973 Teaching Assistant, Dept. of Mathematics, Bar-Ilan University. Course: Introduction to computing. 1 Nov. 1978 – June 1979 Programmer, The Weizmann Institute of Science. Assignments: implementing a discrete-event simulation package and writing input-output routines for a database management system. Feb. 1979 – Oct. 1980 Research Assistant, Inst. of Math. and Computer Science, The Hebrew University of Jerusalem. Research subject: Theory of data dependencies. Nov. 1980 – Aug. 1981 Instructor, Inst. of Math. and Computer Science, The Hebrew University of Jerusalem. Course: Advanced topics in database theory. Sep. 1981 – Aug. 1983 Postdoctoral Scholar, Dept. of Computer Science, Stanford Univer- sity. -
Constraint Clustering and Parity Games
Constrained Clustering Problems and Parity Games Clemens Rösner geboren in Ulm Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Bonn 2019 1. Gutachter: Prof. Dr. Heiko Röglin 2. Gutachterin: Prof. Dr. Anne Driemel Tag der mündlichen Prüfung: 05. September 2019 Erscheinungsjahr: 2019 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Abstract Clustering is a fundamental tool in data mining. It partitions points into groups (clusters) and may be used to make decisions for each point based on its group. We study several clustering objectives. We begin with studying the Euclidean k-center problem. The k-center problem is a classical combinatorial optimization problem which asks to select k centers and assign each input point in a set P to one of the centers, such that the maximum distance of any input point to its assigned center is minimized. The Euclidean k-center problem assumes that the input set P is a subset of a Euclidean space and that each location in the Euclidean space can be chosen as a center. We focus on the special case with k = 1, the smallest enclosing ball problem: given a set of points in m-dimensional Euclidean space, find the smallest sphere enclosing all the points. We combine known results about convex optimization with structural properties of the smallest enclosing ball to create a new algorithm. We show that on instances with rational coefficients our new algorithm computes the exact center of the optimal solutions and has a worst-case run time that is polynomial in the size of the input.