Polytree from Wikipedia, the Free Encyclopedia Contents

Total Page:16

File Type:pdf, Size:1020Kb

Polytree from Wikipedia, the Free Encyclopedia Contents Polytree From Wikipedia, the free encyclopedia Contents 1 Connectivity (graph theory) 1 1.1 Connected graph ............................................ 2 1.2 Definitions of components, cuts and connectivity ........................... 2 1.3 Menger’s theorem ........................................... 3 1.4 Computational aspects ......................................... 4 1.5 Examples ............................................... 4 1.6 Bounds on connectivity ........................................ 4 1.7 Other properties ............................................ 4 1.8 See also ................................................ 5 1.9 References ............................................... 5 2 Cycle (graph theory) 6 2.1 Chordless cycles ............................................ 7 2.2 Cycle space .............................................. 7 2.3 Cycle detection ............................................ 7 2.4 Covering graphs by cycles ....................................... 7 2.5 Graph classes defined by cycles .................................... 8 2.6 References ............................................... 8 3 Directed acyclic graph 9 3.1 Mathematical properties ....................................... 10 3.1.1 Reachability, transitive closure, and transitive reduction ................... 10 3.1.2 Topological ordering ..................................... 11 3.1.3 Combinatorial enumeration ................................. 11 3.1.4 Related families of graphs .................................. 11 3.2 Computational problems ....................................... 11 3.2.1 Topological sorting and recognition ............................. 11 3.2.2 Construction from cyclic graphs ............................... 12 3.2.3 Transitive closure and transitive reduction .......................... 12 3.2.4 Closure problem ....................................... 12 3.3 Applications .............................................. 12 3.3.1 Path algorithms ........................................ 12 3.3.2 Scheduling .......................................... 12 i ii CONTENTS 3.3.3 Data processing networks .................................. 13 3.3.4 Causal structures ....................................... 13 3.3.5 Genealogy and version history ................................ 13 3.3.6 Data compression ...................................... 14 3.4 References .............................................. 14 3.5 External links ............................................. 16 4 Directed graph 17 4.1 Basic terminology ........................................... 18 4.2 Indegree and outdegree ........................................ 18 4.3 Degree sequence ............................................ 19 4.4 Digraph connectivity .......................................... 19 4.5 Classes of digraphs .......................................... 20 4.6 See also ................................................ 21 4.7 Notes ................................................. 22 4.8 References ............................................... 22 5 Orientation (graph theory) 23 5.1 Oriented graphs ............................................ 23 5.2 Constrained orientations ........................................ 23 5.3 References ............................................... 24 5.4 External links ............................................. 24 6 Polytree 25 6.1 Related structures ........................................... 26 6.2 Enumeration .............................................. 26 6.3 Sumner’s conjecture .......................................... 26 6.4 Applications .............................................. 26 6.5 See also ................................................ 26 6.6 Notes ................................................. 26 6.7 References ............................................... 27 7 Tournament (graph theory) 28 7.1 Paths and cycles ............................................ 28 7.2 Transitivity .............................................. 28 7.2.1 Equivalent conditions ..................................... 28 7.2.2 Ramsey theory ........................................ 29 7.2.3 Paradoxical tournaments ................................... 30 7.2.4 Condensation ......................................... 30 7.3 Score sequences and score sets .................................... 30 7.4 See also ................................................ 31 7.5 Notes ................................................. 31 7.6 References .............................................. 31 CONTENTS iii 8 Tree (graph theory) 33 8.1 Definitions .............................................. 33 8.1.1 Plane tree ........................................... 34 8.2 Example ............................................... 34 8.3 Facts ................................................. 34 8.4 Enumeration ............................................. 35 8.4.1 Labeled trees ......................................... 35 8.4.2 Unlabeled trees ........................................ 35 8.5 Types of trees ............................................. 36 8.6 See also ................................................ 36 8.7 Notes ................................................. 36 8.8 References ............................................... 37 8.9 Further reading ............................................ 37 8.10 Text and image sources, contributors, and licenses .......................... 38 8.10.1 Text .............................................. 38 8.10.2 Images ............................................ 38 8.10.3 Content license ........................................ 39 Chapter 1 Connectivity (graph theory) This graph becomes disconnected when the right-most node in the gray area on the left is removed In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the 1 2 CHAPTER 1. CONNECTIVITY (GRAPH THEORY) This graph becomes disconnected when the dashed edge is removed. minimum number of elements (nodes or edges) that need to be removed to disconnect the remaining nodes from each other.[1] It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its robustness as a network. 1.1 Connected graph A graph is connected when there is a path between every pair of vertices. In a connected graph, there are no unreachable vertices. A graph that is not connected is disconnected. A graph with just one vertex is connected. An edgeless graph with two or more vertices is disconnected. 1.2 Definitions of components, cuts and connectivity In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected. If the two vertices are additionally connected by a path of length 1, i.e. by a single edge, the vertices are called adjacent.A graph is said to be connected if every pair of vertices in the graph is connected. A connected component is a maximal connected subgraph of G. Each vertex belongs to exactly one connected com- ponent, as does each edge. A directed graph is called weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph. It is connected if it contains a directed path from u to v or a directed path from v to u for every pair of vertices u, v. It is strongly connected or strong if it contains a directed path from u to v and a directed path from v to u for every pair of vertices u, v. The strong components are the maximal strongly connected subgraphs. A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected. The connectivity or vertex connectivity κ(G) (where G is not a complete graph) is the size of a minimal vertex cut. A graph is called k-connected or k-vertex-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k-connected if it contains at least k+1 vertices, but does 1.3. MENGER’S THEOREM 3 With vertex 0 this graph is disconnected, the rest of the graph is connected. not contain a set of k − 1 vertices whose removal disconnects the graph; and κ(G) is defined as the largest k such that G is k-connected. In particular, a complete graph with n vertices, denoted K, has no vertex cuts at all, but κ(Kn) = n − 1. A vertex cut for two vertices u and v is a set of vertices whose removal from the graph disconnects u and v. The local connectivity κ(u, v) is the size of a smallest vertex cut separating u and v. Local connectivity is symmetric for undirected graphs; that is, κ(u, v) = κ(v, u). Moreover, except for complete graphs, κ(G) equals the minimum of κ(u, v) over all nonadjacent pairs of vertices u, v. 2-connectivity is also called biconnectivity and 3-connectivity is also called triconnectivity. A graph G which is con- nected but not 2-connected is sometimes called separable. Analogous concepts can be defined for edges. In the simple case in which cutting a single, specific edge would disconnect the graph, that edge is called a bridge. More generally, the edge cut of G is a group of edges whose total removal renders the graph disconnected. The edge-connectivity λ(G) is the size of a smallest edge cut, and the local edge-connectivity λ(u, v) of two vertices u, v is the size of a smallest edge cut disconnecting u from v. Again, local edge-connectivity is symmetric. A graph is called k-edge-connected if its edge connectivity is k or greater. 1.3 Menger’s theorem Main article: Menger’s theorem
Recommended publications
  • 11Th International Conference for Internet Technology and Secured Transactions
    Analysis of PRNGs with Large State Spaces and Structural Improvements Gabriele Spenger, Jörg Keller Faculty of Mathematics and Computer Science FernUniversität in Hagen 58084 Hagen, Germany [email protected], [email protected] Abstract usually been subject for a lot of scientific work trying to find any kinds of weaknesses before their standardization. But there are also occasions where the The security of cryptographic functions such as standards do not provide the right tools for an pseudo random number generators (PRNGs) can application. One example is the application on low cost usually not be mathematically proven. Instead, RFID transmitters, which only allow a very low statistical properties of the generator are commonly complexity of the algorithms due to the cost restraints evaluated using standardized test batteries on a (the cost is mostly driven by the required chip area [1]). limited number of output values. This paper In these cases, it might be required to use a non- demonstrates that valuable additional information standardized algorithm. This implies the danger of about the properties of the algorithm can be gathered choosing an algorithm that does not provide the by analyzing the state space. As the state space for necessary security. practical use cases is usually huge, two approaches Besides the algorithms themselves also a couple of are presented to make this analysis manageable. methods for the assessment of the suitability of Results for a practical application of these cryptographic functions have been standardized. approaches to the algorithms AKARI and A5/1 are Examples for methods for assessing the security of provided, giving new insights about the suitability of PRNGs are the Marsaglia suite of Tests of these PRNGs for security applications.
    [Show full text]
  • I?'!'-Comparability Graphs
    Discrete Mathematics 74 (1989) 173-200 173 North-Holland I?‘!‘-COMPARABILITYGRAPHS C.T. HOANG Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, U.S.A. and B.A. REED Discrete Mathematics Group, Bell Communications Research, Morristown, NJ 07950, U.S.A. In 1981, Chv&tal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the &comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characteriza- tion of &comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for &comparability graphs. 1. Introduction A natural way to color the vertices of a graph is to put them in some order v*cv~<” l < v, and then assign colors in the following manner: (1) Consider the vertxes sequentially (in the sequence given by the order) (2) Assign to each Vi the smallest color (positive integer) not used on any neighbor vi of Vi with j c i. We shall call this the greedy coloring algorithm. An order < of a graph G is perfect if for each subgraph H of G, the greedy algorithm applied to H, gives an optimal coloring of H. An obstruction in a ordered graph (G, <) is a set of four vertices {a, b, c, d} with edges ab, bc, cd (and no other edge) and a c b, d CC. Clearly, if < is a perfect order on G, then (G, C) contains no obstruction (because the chromatic number of an obstruction is twu, but the greedy coloring algorithm uses three colors).
    [Show full text]
  • Using Map Service API for Driving Cycle Detection for Wearable GPS Data: Preprint
    Using Map Service API for Driving Cycle Detection for Wearable GPS Data Preprint Lei Zhu and Jeffrey Gonder National Renewable Energy Laboratory To be presented at Transportation Research Board (TRB) 97th Annual Meeting Washington, DC January 7-11, 2018 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-5400-70474 December 2017 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • The Number of Dissimilar Supergraphs of a Linear Graph
    Pacific Journal of Mathematics THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH FRANK HARARY Vol. 7, No. 1 January 1957 THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH FRANK HARARY 1. Introduction* A (p, q) graph is one with p vertices and q lines. A formula is obtained for the number of dissimilar occurrences of a given (α, β) graph H as a subgraph of all (p, q) graphs G, oc<ip, β <: q, that is, for the number of dissimilar (p, q) supergraphs of H. The enumeration methods are those of Pόlya [7]. This result is then appli- ed to obtain formulas for the number of dissimilar complete subgraphs (cliques) and cycles among all (p, q) graphs. The formula for the num- ber of rooted graphs in [2] is a special case of the number of dissimilar cliques. This note complements [3] in which the number of dissimilar {p, k) subgraphs of a given (p, q) graph is found. We conclude with a discussion of two unsolved problems. A {linear) graph G (see [5] as a general reference) consists of a finite set V of vertices together with a prescribed subset W of the col- lection of all unordered pairs of distinct vertices. The members of W are called lines and two vertices vu v% are adjacent if {vlt v2} e W, that is, if there is a line joining them. By the complement Gr of a graph G, we mean the graph whose vertex-set coincides with that of G, in which two vertices are adjacent if and only if they are not adjacent in G.
    [Show full text]
  • Graph Orientations and Linear Extensions
    GRAPH ORIENTATIONS AND LINEAR EXTENSIONS. BENJAMIN IRIARTE Abstract. Given an underlying undirected simple graph, we consider the set of all acyclic orientations of its edges. Each of these orientations induces a par- tial order on the vertices of our graph and, therefore, we can count the number of linear extensions of these posets. We want to know which choice of orien- tation maximizes the number of linear extensions of the corresponding poset, and this problem will be solved essentially for comparability graphs and odd cycles, presenting several proofs. The corresponding enumeration problem for arbitrary simple graphs will be studied, including the case of random graphs; this will culminate in 1) new bounds for the volume of the stable polytope and 2) strong concentration results for our main statistic and for the graph entropy, which hold true a:s: for random graphs. We will then argue that our problem springs up naturally in the theory of graphical arrangements and graphical zonotopes. 1. Introduction. Linear extensions of partially ordered sets have been the object of much attention and their uses and applications remain increasing. Their number is a fundamental statistic of posets, and they relate to ever-recurring problems in computer science due to their role in sorting problems. Still, many fundamental questions about linear extensions are unsolved, including the well-known 1=3-2=3 Conjecture. Efficiently enumerating linear extensions of certain posets is difficult, and the general problem has been found to be ]P-complete in Brightwell and Winkler (1991). Directed acyclic graphs, and similarly, acyclic orientations of simple undirected graphs, are closely related to posets, and their problem-modeling values in several disciplines, including the biological sciences, needs no introduction.
    [Show full text]
  • Applications of DFS
    (b) acyclic (tree) iff a DFS yeilds no Back edges 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges 1 / 7 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges (b) acyclic (tree) iff a DFS yeilds no Back edges 1 / 7 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges (b) acyclic (tree) iff a DFS yeilds no Back edges 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 1 / 7 4. Connected components of a undirected graph (see Homework 6) 5.
    [Show full text]
  • Matroid Theory
    MATROID THEORY HAYLEY HILLMAN 1 2 HAYLEY HILLMAN Contents 1. Introduction to Matroids 3 1.1. Basic Graph Theory 3 1.2. Basic Linear Algebra 4 2. Bases 5 2.1. An Example in Linear Algebra 6 2.2. An Example in Graph Theory 6 3. Rank Function 8 3.1. The Rank Function in Graph Theory 9 3.2. The Rank Function in Linear Algebra 11 4. Independent Sets 14 4.1. Independent Sets in Graph Theory 14 4.2. Independent Sets in Linear Algebra 17 5. Cycles 21 5.1. Cycles in Graph Theory 22 5.2. Cycles in Linear Algebra 24 6. Vertex-Edge Incidence Matrix 25 References 27 MATROID THEORY 3 1. Introduction to Matroids A matroid is a structure that generalizes the properties of indepen- dence. Relevant applications are found in graph theory and linear algebra. There are several ways to define a matroid, each relate to the concept of independence. This paper will focus on the the definitions of a matroid in terms of bases, the rank function, independent sets and cycles. Throughout this paper, we observe how both graphs and matrices can be viewed as matroids. Then we translate graph theory to linear algebra, and vice versa, using the language of matroids to facilitate our discussion. Many proofs for the properties of each definition of a matroid have been omitted from this paper, but you may find complete proofs in Oxley[2], Whitney[3], and Wilson[4]. The four definitions of a matroid introduced in this paper are equiv- alent to each other.
    [Show full text]
  • Lipics-WABI-2021-7.Pdf (2
    Tree Diet: Reducing the Treewidth to Unlock FPT Algorithms in RNA Bioinformatics Bertrand Marchand # LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée, France Yann Ponty1 # LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France Laurent Bulteau1 # LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée, France Abstract Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed- Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to extend their scope of applicability, we introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down to a prescribed treewidth tw′. Our rationale is that the time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to take deleted edges into account. Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2O(tw)n time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., NP-hardness when tw′ or tw−tw′ is constant). We propose a prototype implementation for our approach which we apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption of tree-decomposition-based algorithms in Bioinformatics.
    [Show full text]
  • Complexity and Exact Algorithms for Vertex Multicut in Interval and Bounded Treewidth Graphs 1
    Complexity and Exact Algorithms for Vertex Multicut in Interval and Bounded Treewidth Graphs 1 Jiong Guo a,∗ Falk H¨uffner a Erhan Kenar b Rolf Niedermeier a Johannes Uhlmann a aInstitut f¨ur Informatik, Friedrich-Schiller-Universit¨at Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany bWilhelm-Schickard-Institut f¨ur Informatik, Universit¨at T¨ubingen, Sand 13, D-72076 T¨ubingen, Germany Abstract Multicut is a fundamental network communication and connectivity problem. It is defined as: given an undirected graph and a collection of pairs of terminal vertices, find a minimum set of edges or vertices whose removal disconnects each pair. We mainly focus on the case of removing vertices, where we distinguish between allowing or disallowing the removal of terminal vertices. Complementing and refining previous results from the literature, we provide several NP-completeness and (fixed- parameter) tractability results for restricted classes of graphs such as trees, interval graphs, and graphs of bounded treewidth. Key words: Combinatorial optimization, Complexity theory, NP-completeness, Dynamic programming, Graph theory, Parameterized complexity 1 Introduction Motivation and previous results. Multicut in graphs is a fundamental network design problem. It models questions concerning the reliability and ∗ Corresponding author. Tel.: +49 3641 9 46325; fax: +49 3641 9 46002 E-mail address: [email protected]. 1 An extended abstract of this work appears in the proceedings of the 32nd Interna- tional Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2006) [19]. Now, in particular the proof of Theorem 5 has been much simplified. Preprint submitted to Elsevier Science 2 February 2007 robustness of computer and communication networks.
    [Show full text]
  • Matroids You Have Known
    26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction.
    [Show full text]
  • Confluent Hasse Diagrams
    Confluent Hasse diagrams David Eppstein Joseph A. Simons Department of Computer Science, University of California, Irvine, USA. October 29, 2018 Abstract We show that a transitively reduced digraph has a confluent upward drawing if and only if its reachability relation has order dimension at most two. In this case, we construct a confluent upward drawing with O(n2) features, in an O(n) × O(n) grid in O(n2) time. For the digraphs representing series-parallel partial orders we show how to construct a drawing with O(n) fea- tures in an O(n) × O(n) grid in O(n) time from a series-parallel decomposition of the partial order. Our drawings are optimal in the number of confluent junctions they use. 1 Introduction One of the most important aspects of a graph drawing is that it should be readable: it should convey the structure of the graph in a clear and concise way. Ease of understanding is difficult to quantify, so various proxies for readability have been proposed; one of the most prominent is the number of edge crossings. That is, we should minimize the number of edge crossings in our drawing (a planar drawing, if possible, is ideal), since crossings make drawings harder to read. Another measure of readability is the total amount of ink required by the drawing [1]. This measure can be formulated in terms of Tufte’s “data-ink ratio” [22,35], according to which a large proportion of the ink on any infographic should be devoted to information. Thus given two different ways to present information, we should choose the more succinct and crossing-free presentation.
    [Show full text]
  • Masters Thesis: an Approach to the Automatic Synthesis of Controllers with Mixed Qualitative/Quantitative Specifications
    An approach to the automatic synthesis of controllers with mixed qualitative/quantitative specifications. Athanasios Tasoglou Master of Science Thesis Delft Center for Systems and Control An approach to the automatic synthesis of controllers with mixed qualitative/quantitative specifications. Master of Science Thesis For the degree of Master of Science in Embedded Systems at Delft University of Technology Athanasios Tasoglou October 11, 2013 Faculty of Electrical Engineering, Mathematics and Computer Science (EWI) · Delft University of Technology *Cover by Orestis Gartaganis Copyright c Delft Center for Systems and Control (DCSC) All rights reserved. Abstract The world of systems and control guides more of our lives than most of us realize. Most of the products we rely on today are actually systems comprised of mechanical, electrical or electronic components. Engineering these complex systems is a challenge, as their ever growing complexity has made the analysis and the design of such systems an ambitious task. This urged the need to explore new methods to mitigate the complexity and to create sim- plified models. The answer to these new challenges? Abstractions. An abstraction of the the continuous dynamics is a symbolic model, where each “symbol” corresponds to an “aggregate” of states in the continuous model. Symbolic models enable the correct-by-design synthesis of controllers and the synthesis of controllers for classes of specifications that traditionally have not been considered in the context of continuous control systems. These include qualitative specifications formalized using temporal logics, such as Linear Temporal Logic (LTL). Be- sides addressing qualitative specifications, we are also interested in synthesizing controllers with quantitative specifications, in order to solve optimal control problems.
    [Show full text]