Complexity and Exact Algorithms for Vertex Multicut in Interval and Bounded Treewidth Graphs 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proper Interval Graphs and the Guard Problem 1
DISCRETE N~THEMATICS ELSEVIER Discrete Mathematics 170 (1997) 223-230 Note Proper interval graphs and the guard problem1 Chiuyuan Chen*, Chin-Chen Chang, Gerard J. Chang Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan Received 26 September 1995; revised 27 August 1996 Abstract This paper is a study of the hamiltonicity of proper interval graphs with applications to the guard problem in spiral polygons. We prove that proper interval graphs with ~> 2 vertices have hamiltonian paths, those with ~>3 vertices have hamiltonian cycles, and those with />4 vertices are hamiltonian-connected if and only if they are, respectively, 1-, 2-, or 3-connected. We also study the guard problem in spiral polygons by connecting the class of nontrivial connected proper interval graphs with the class of stick-intersection graphs of spiral polygons. Keywords." Proper interval graph; Hamiltonian path (cycle); Hamiltonian-connected; Guard; Visibility; Spiral polygon I. Introduction The main purpose of this paper is to study the hamiltonicity of proper interval graphs with applications to the guard problem in spiral polygons. Our terminology and graph notation are standard, see [2], except as indicated. The intersection graph of a family ~ of nonempty sets is derived by representing each set in ~ with a vertex and connecting two vertices with an edge if and only if their corresponding sets intersect. An interval graph is the intersection graph G of a family J of intervals on a real line. J is usually called the interval model for G. A proper interval graph is an interval graph with an interval model ~¢ such that no interval in J properly contains another. -
Classes of Graphs with Restricted Interval Models Andrzej Proskurowski, Jan Arne Telle
Classes of graphs with restricted interval models Andrzej Proskurowski, Jan Arne Telle To cite this version: Andrzej Proskurowski, Jan Arne Telle. Classes of graphs with restricted interval models. Discrete Mathematics and Theoretical Computer Science, DMTCS, 1999, 3 (4), pp.167-176. hal-00958935 HAL Id: hal-00958935 https://hal.inria.fr/hal-00958935 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 3, 1999, 167–176 Classes of graphs with restricted interval models ✁ Andrzej Proskurowski and Jan Arne Telle ✂ University of Oregon, Eugene, Oregon, USA ✄ University of Bergen, Bergen, Norway received June 30, 1997, revised Feb 18, 1999, accepted Apr 20, 1999. We introduce ☎ -proper interval graphs as interval graphs with interval models in which no interval is properly con- tained in more than ☎ other intervals, and also provide a forbidden induced subgraph characterization of this class of ✆✞✝✠✟ graphs. We initiate a graph-theoretic study of subgraphs of ☎ -proper interval graphs with maximum clique size and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter ✆ ✆ ☎ to vary from 0 to , we obtain a nested hierarchy of graph families, from graphs of bandwidth at most to graphs of pathwidth at most ✆ . -
On Computing Longest Paths in Small Graph Classes
On Computing Longest Paths in Small Graph Classes Ryuhei Uehara∗ Yushi Uno† July 28, 2005 Abstract The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for weighted trees, block graphs, and cacti. We next show that the longest path problem can be solved efficiently on some graph classes that have natural interval representations. Keywords: efficient algorithms, graph classes, longest path problem. 1 Introduction The Hamiltonian path problem is one of the most well known NP-hard problem, and there are numerous applications of the problems [17]. For such an intractable problem, there are two major approaches; approximation algorithms [20, 2, 35] and algorithms with parameterized complexity analyses [15]. In both approaches, we have to change the decision problem to the optimization problem. Therefore the longest path problem is one of the basic problems from the viewpoint of combinatorial optimization. From the practical point of view, it is also very natural approach to try to find a longest path in a given graph, even if it does not have a Hamiltonian path. However, finding a longest path seems to be more difficult than determining whether the given graph has a Hamiltonian path or not. -
Lipics-WABI-2021-7.Pdf (2
Tree Diet: Reducing the Treewidth to Unlock FPT Algorithms in RNA Bioinformatics Bertrand Marchand # LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée, France Yann Ponty1 # LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France Laurent Bulteau1 # LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée, France Abstract Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed- Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to extend their scope of applicability, we introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down to a prescribed treewidth tw′. Our rationale is that the time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to take deleted edges into account. Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2O(tw)n time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., NP-hardness when tw′ or tw−tw′ is constant). We propose a prototype implementation for our approach which we apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption of tree-decomposition-based algorithms in Bioinformatics. -
Sub-Coloring and Hypo-Coloring Interval Graphs⋆
Sub-coloring and Hypo-coloring Interval Graphs? Rajiv Gandhi1, Bradford Greening, Jr.1, Sriram Pemmaraju2, and Rajiv Raman3 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 08102. E-mail: [email protected]. 2 Department of Computer Science, University of Iowa, Iowa City, Iowa 52242. E-mail: [email protected]. 3 Max-Planck Institute for Informatik, Saarbr¨ucken, Germany. E-mail: [email protected]. Abstract. In this paper, we study the sub-coloring and hypo-coloring problems on interval graphs. These problems have applications in job scheduling and distributed computing and can be used as “subroutines” for other combinatorial optimization problems. In the sub-coloring problem, given a graph G, we want to partition the vertices of G into minimum number of sub-color classes, where each sub-color class induces a union of disjoint cliques in G. In the hypo-coloring problem, given a graph G, and integral weights on vertices, we want to find a partition of the vertices of G into sub-color classes such that the sum of the weights of the heaviest cliques in each sub-color class is minimized. We present a “forbidden subgraph” characterization of graphs with sub-chromatic number k and use this to derive a a 3-approximation algorithm for sub-coloring interval graphs. For the hypo-coloring problem on interval graphs, we first show that it is NP-complete and then via reduction to the max-coloring problem, show how to obtain an O(log n)-approximation algorithm for it. 1 Introduction Given a graph G = (V, E), a k-sub-coloring of G is a partition of V into sub-color classes V1,V2,...,Vk; a subset Vi ⊆ V is called a sub-color class if it induces a union of disjoint cliques in G. -
Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models
Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models Von der Fakult¨at fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Mathematiker George B. Mertzios aus Thessaloniki, Griechenland Berichter: Privat Dozent Dr. Walter Unger (Betreuer) Professor Dr. Berthold V¨ocking (Zweitbetreuer) Professor Dr. Dieter Rautenbach Tag der mundlichen¨ Prufung:¨ Montag, den 30. November 2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Abstract This thesis mainly deals with the structure of some classes of perfect graphs that have been widely investigated, due to both their interesting structure and their numerous applications. By exploiting the structure of these graph classes, we provide solutions to some open problems on them (in both the affirmative and negative), along with some new representation models that enable the design of new efficient algorithms. In particular, we first investigate the classes of interval and proper interval graphs, and especially, path problems on them. These classes of graphs have been extensively studied and they find many applications in several fields and disciplines such as genetics, molecular biology, scheduling, VLSI design, archaeology, and psychology, among others. Although the Hamiltonian path problem is well known to be linearly solvable on interval graphs, the complexity status of the longest path problem, which is the most natural optimization version of the Hamiltonian path problem, was an open question. We present the first polynomial algorithm for this problem with running time O(n4). Furthermore, we introduce a matrix representation for both interval and proper interval graphs, called the Normal Interval Representation (NIR) and the Stair Normal Interval Representation (SNIR) matrix, respectively. -
A Width Parameter Useful for Chordal and Co-Comparability Graphs
A width parameter useful for chordal and co-comparability graphs Dong Yeap Kang1, O-joung Kwon2, Torstein J. F. Strømme3, and Jan Arne Telle3 ? 1 Department of Mathematical Sciences, KAIST, Daejeon, South Korea 2 Institute of Software Technology and Theoretical Computer Science, TU Berlin, Germany 3 Department of Informatics, University of Bergen, Norway [email protected], [email protected], [email protected], [email protected] Abstract. In 2013 Belmonte and Vatshelle used mim-width, a graph parameter bounded on interval graphs and permutation graphs that strictly generalizes clique-width, to explain existing algorithms for many domination-type problems, also known as (σ; ρ)- problems or LC-VSVP problems, on many special graph classes. In this paper, we focus on chordal graphs and co-comparability graphs, that strictly contain interval graphs and permutation graphs respectively. First, we show that mim-width is unbounded on these classes, thereby settling an open problem from 2012. Then, we introduce two graphs Kt Kt and Kt St to restrict these graph classes, obtained from the disjoint union of two cliques of size t, and one clique of size t and one independent set of size t respec- tively, by adding a perfect matching. We prove that (Kt St)-free chordal graphs have mim-width at most t − 1, and (Kt Kt)-free co-comparability graphs have mim-width at most t − 1. From this, we obtain several algorithmic consequences, for instance, while Dominating Set is NP-complete on chordal graphs, like all LC-VSVP problems it can be solved in time O(nt) on chordal graphs where t is the maximum among induced sub- graphs Kt St in the given graph. -
Graceful Labeling of Graphs
GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia de Sistemas e Computação. Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Rio de Janeiro Dezembro de 2016 GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO. Examinada por: Prof. Celina Miraglia Herrera de Figueiredo, D.Sc. Prof. Vinícius Gusmão Pereira de Sá, D.Sc. Prof. Rosiane de Freitas Rodrigues, D.Sc. Prof. Raphael Carlos Santos Machado, D.Sc. RIO DE JANEIRO, RJ – BRASIL DEZEMBRO DE 2016 Zhou, Rodrigo Ming Graceful Labeling of Graphs/Rodrigo Ming Zhou. – Rio de Janeiro: UFRJ/COPPE, 2016. IX, 40 p.: il.; 29; 7cm. Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Dissertação (mestrado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2016. Bibliography: p. 38 – 40. 1. graceful labeling. 2. computational proofs. 3. graphs. I. de Figueiredo, Celina Miraglia Herrera et al. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Sistemas e Computação. III. Título. iii Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.) GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou Dezembro/2016 Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Programa: Engenharia de Sistemas e Computação Em 1966, A. -
Classes of Perfect Graphs
This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571 Classes of Perfect Graphs Stefan Hougardy Humboldt-Universit¨atzu Berlin Institut f¨urInformatik 10099 Berlin, Germany [email protected] February 28, 2003 revised October 2003, February 2005, and July 2007 Abstract. The Strong Perfect Graph Conjecture, suggested by Claude Berge in 1960, had a major impact on the development of graph theory over the last forty years. It has led to the definitions and study of many new classes of graphs for which the Strong Perfect Graph Conjecture has been verified. Powerful concepts and methods have been developed to prove the Strong Perfect Graph Conjecture for these special cases. In this paper we survey 120 of these classes, list their fundamental algorithmic properties and present all known relations between them. 1 Introduction A graph is called perfect if the chromatic number and the clique number have the same value for each of its induced subgraphs. The notion of perfect graphs was introduced by Berge [6] in 1960. He also conjectured that a graph is perfect if and only if it contains, as an induced subgraph, neither an odd cycle of length at least five nor its complement. This conjecture became known as the Strong Perfect Graph Conjecture and attempts to prove it contributed much to the developement of graph theory in the past forty years. The methods developed and the results proved have their uses also outside the area of perfect graphs. The theory of antiblocking polyhedra developed by Fulkerson [37], and the theory of modular decomposition (which has its origins in a paper of Gallai [39]) are two such examples. -
Boxicity, Poset Dimension, and Excluded Minors
BOXICITY, POSET DIMENSION, AND EXCLUDED MINORS LOUIS ESPERET AND VEIT WIECHERT Abstract. In this short note, we relate the boxicity of graphs (and the dimension of posets) with their generalized coloring parameters. In particular, together with known estimates, our results 2 imply that any graph with no Kt-minor can be represented as the intersection of O(t log t) interval 4 15 2 graphs (improving the previous bound of O(t )), and as the intersection of 2 t circular-arc graphs. 1. Introduction The intersection G1 \···\ Gk of k graphs G1;:::;Gk defined on the same vertex set V , is the graph (V; E1 \ ::: \ Ek), where Ei (1 6 i 6 k) denotes the edge set of Gi. The boxicity box(G) of a graph G, introduced by Roberts [19], is defined as the smallest k such that G is the intersection of k interval graphs. Scheinerman proved that outerplanar graphs have boxicity at most two [20] and Thomassen proved that planar graphs have boxicity at most three [24]. Outerplanar graphs have no K4-minor and planar graphs have no K5-minor, so a natural question is how these two results extend to graphs with no Kt-minor for t > 6. It was proved in [6] that if a graph has acyclic chromatic number at most k, then its boxicity is at most k(k − 1). Using the fact that Kt-minor-free graphs have acyclic chromatic number at 2 4 most O(t ) [10], it implies that graphs with no Kt-minor have boxicity O(t ). On the other hand, it was noted in [5] that a result of Adiga, Bhowmick and Chandran [1] (deduced from a result of Erd}os,Kiersteadp and Trotter [4]) implies the existence of graphs with no Kt-minor and with boxicity Ω(t log t). -
Chordal Graphs MPRI 2017–2018
Chordal graphs MPRI 2017{2018 Chordal graphs MPRI 2017{2018 Michel Habib [email protected] http://www.irif.fr/~habib Sophie Germain, septembre 2017 Chordal graphs MPRI 2017{2018 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural insights of chordal graphs Other classical graph searches and chordal graphs Greedy colorings Chordal graphs MPRI 2017{2018 Chordal graphs Definition A graph is chordal iff it has no chordless cycle of length ≥ 4 or equivalently it has no induced cycle of length ≥ 4. I Chordal graphs are hereditary I Interval graphs are chordal Chordal graphs MPRI 2017{2018 Chordal graphs Applications I Many NP-complete problems for general graphs are polynomial for chordal graphs. I Graph theory : Treewidth (resp. pathwidth) are very important graph parameters that measure distance from a chordal graph (resp. interval graph). 1 I Perfect phylogeny 1. In fact chordal graphs were first defined in a biological modelisation pers- pective ! Chordal graphs MPRI 2017{2018 Chordal graphs G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 38 (1961), pp. 71{76 Chordal graphs MPRI 2017{2018 Representation of chordal graphs About Representations I Interval graphs are chordal graphs I How can we represent chordal graphs ? I As an intersection of some family ? I This family must generalize intervals on a line Chordal graphs MPRI 2017{2018 Representation of chordal graphs Fundamental objects to play with I Maximal Cliques under inclusion I We can have exponentially many maximal cliques : A complete graph Kn in which each vertex is replaced by a pair of false twins has exactly 2n maximal cliques. -
Improved Lower Bounds for Graph Embedding Problems
Improved Lower Bounds for Graph Embedding Problems Hans L. Bodlaender1;2? and Tom C. van der Zanden1 1 Department of Computer Science, Utrecht University, Utrecht, The Netherlands fH.L.Bodlaender,[email protected] 2 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands Abstract. In this paper, we give new, tight subexponential lower bounds for a number of graph embedding problems. We introduce two related combinatorial problems, which we call String Crafting and Orthog- onal Vector Crafting, and show that these cannot be solved in time 2o(jsj= log jsj), unless the Exponential Time Hypothesis fails. These results are used to obtain simplified hardness results for several graph embedding problems, on more restricted graph classes than previ- ously known: assuming the Exponential Time Hypothesis, there do not exist algorithms that run in 2o(n= log n) time for Subgraph Isomorphism on graphs of pathwidth 1, Induced Subgraph Isomorphism on graphs of pathwidth 1, Graph Minor on graphs of pathwidth 1, Induced Graph Minor on graphs of pathwidth 1, Intervalizing 5-Colored Graphs on trees, and finding a tree or path decomposition with width at most c with a minimum number of bags, for any fixed c ≥ 16. 2Θ(n= log n) appears to be the \correct" running time for many pack- ing and embedding problems on restricted graph classes, and we think String Crafting and Orthogonal Vector Crafting form a useful framework for establishing lower bounds of this form. 1 Introduction Many NP-complete graph problems admit faster algorithms when restricted to planar graphs.