Remembering Frank Harary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Number of Dissimilar Supergraphs of a Linear Graph
Pacific Journal of Mathematics THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH FRANK HARARY Vol. 7, No. 1 January 1957 THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH FRANK HARARY 1. Introduction* A (p, q) graph is one with p vertices and q lines. A formula is obtained for the number of dissimilar occurrences of a given (α, β) graph H as a subgraph of all (p, q) graphs G, oc<ip, β <: q, that is, for the number of dissimilar (p, q) supergraphs of H. The enumeration methods are those of Pόlya [7]. This result is then appli- ed to obtain formulas for the number of dissimilar complete subgraphs (cliques) and cycles among all (p, q) graphs. The formula for the num- ber of rooted graphs in [2] is a special case of the number of dissimilar cliques. This note complements [3] in which the number of dissimilar {p, k) subgraphs of a given (p, q) graph is found. We conclude with a discussion of two unsolved problems. A {linear) graph G (see [5] as a general reference) consists of a finite set V of vertices together with a prescribed subset W of the col- lection of all unordered pairs of distinct vertices. The members of W are called lines and two vertices vu v% are adjacent if {vlt v2} e W, that is, if there is a line joining them. By the complement Gr of a graph G, we mean the graph whose vertex-set coincides with that of G, in which two vertices are adjacent if and only if they are not adjacent in G. -
Leverages and Constraints for Turkish Foreign Policy in Syrian War: a Structural Balance Approach
Instructions for authors, permissions and subscription information: E-mail: [email protected] Web: www.uidergisi.com.tr Leverages and Constraints for Turkish Foreign Policy in Syrian War: A Structural Balance Approach Serdar Ş. GÜNER* and Dilan E. KOÇ** * Assoc. Prof. Dr., Department of International Relations, Bilkent University ** Student, Department of International Relations, Bilkent University To cite this article: Güner, Serdar Ş. and Koç, Dilan E., “Leverages and Constraints for Turkish Foreign Policy in Syrian War: A Structural Balance Approach”, Uluslararası İlişkiler, Volume 15, No. 59, 2018, pp. 89-103. Copyright @ International Relations Council of Turkey (UİK-IRCT). All rights reserved. No part of this publication may be reproduced, stored, transmitted, or disseminated, in any form, or by any means, without prior written permission from UİK, to whom all requests to reproduce copyright material should be directed, in writing. References for academic and media coverages are beyond this rule. Statements and opinions expressed in Uluslararası İlişkiler are the responsibility of the authors alone unless otherwise stated and do not imply the endorsement by the other authors, the Editors and the Editorial Board as well as the International Relations Council of Turkey. Uluslararası İlişkiler Konseyi Derneği | Uluslararası İlişkiler Dergisi Web: www.uidergisi.com.tr | E- Mail: [email protected] Leverages and Constraints for Turkish Foreign Policy in Syrian War: A Structural Balance Approach Serdar Ş. GÜNER Assoc. Prof. Dr., Department of International Relations, Bilkent University, Ankara, Turkey. E-mail: [email protected] Dilan E. KOÇ Student, Department of International Relations, Bilkent University, Ankara, Turkey. E-mail: [email protected] The authors thank participants of the Seventh Eurasian Peace Science Network Meeting of 2018 and anonymous referees for their comments and suggestions. -
Introduction to Graph Theory: a Discovery Course for Undergraduates
Introduction to Graph Theory: A Discovery Course for Undergraduates James M. Benedict Augusta State University Contents 1 Introductory Concepts 1 1.1 BasicIdeas ...................................... 1 1.2 Graph Theoretic Equality . 2 1.3 DegreesofVertices .................................. 4 1.4 Subgraphs....................................... 6 1.5 The Complement of a Graph . 7 2 Special Subgraphs 9 2.1 Walks ......................................... 9 2.2 Components...................................... 10 2.3 BlocksofaGraph................................... 11 3 Three Famous Results and One Famous Graph 14 3.1 The Four-Color Theorem . 14 3.2 PlanarGraphs..................................... 16 3.3 ThePetersenGraph ................................. 18 3.4 TraceableGraphs ................................... 18 K(3;3;3) = H1 H2 Removing the edge w1v2 destroys the only C4 v 3 u1 H1: H2: w3 v v2 3 u w1 u 2 u u 2 v 1 3 w 1 w 2 2 w3 u3 w1 v2 v1 Place any edge of H1 into H2 or (vice versa) and a C4 is created. i Remarks By reading through this text one can acquire a familiarity with the elementary topics of Graph Theory and the associated (hopefully standard) notation. The notation used here follows that used by Gary Chartrand at Western Michigan University in the last third of the 20th century. His usage of notation was in‡uenced by that of Frank Harary at the University of Michigan beginning in the early 1950’s. The text’s author was Chartrand’s student at WMU from 1973 to 1976. In order to actually learn any graph theory from this text, one must work through and solve the problems found within it. Some of the problems are very easy. -
(November 12-13)- Page 545
College Park Program (October 30-31) - Page 531 Baton Rouge Program (November 12-13)- Page 545 Notices of the American Mathematical Society < 2.. c: 3 ('1) ~ z c: 3 C" ..,('1) 0'1 October 1982, Issue 220 Volume 29, Number 6, Pages 497-616 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· ing. Abstracts should be submitred on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. -
Decompositions and Graceful Labelings (Supplemental Material for Intro to Graph Theory)
Decompositions and Graceful Labelings (Supplemental Material for Intro to Graph Theory) Robert A. Beeler∗ December 17, 2015 1 Introduction A graph decomposition is a particular problem in the field of combinatorial designs (see Wallis [22] for more information on design theory). A graph decomposition of a graph H is a partition of the edge set of H. In this case, the graph H is called the host for the decomposition. Most graph decomposition problems are concerned with the case where every part of the partition is isomorphic to a single graph G. In this case, we refer to the graph G as the prototype for the decomposition. Further, we refer to the parts of the partition as blocks. As an example, consider the host graph Q3 as shown in Figure 1. In this case, we want to find a decomposition of Q3 into isomorphic copies of the path on three vertices, P3. We label the vertices of P3 as an ordered triple (a, b, c). where ab and bc are the edges of P3. The required blocks in the decompositions are (0, 2, 4), (1, 0, 6), (1, 3, 2), (1, 7, 5), (3, 5, 4), and (4, 6, 7). Usually, the goal of a combinatorial design is to determine whether the particular design is possible. The same is true for graph decompositions. Namely, given a host graph H and a prototype G, determine whether there exist a decomposition of H into isomorphic copies of G. Often, this is a difficult problem. In fact, there are entire books written on the subject (for ∗Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614-1700 USA email: [email protected] 1 2 0 1 2 3 4 5 6 7 Figure 1: A P3-decomposition of a Q3 example, see Bos´ak [1] and Diestel [5]). -
Mathematics Throughout the Ages. II
Mathematics throughout the ages. II Helena Durnová A history of discrete optimalization In: Eduard Fuchs (editor): Mathematics throughout the ages. II. (English). Praha: Výzkumné centrum pro dějiny vědy, 2004. pp. 51–184. Persistent URL: http://dml.cz/dmlcz/401175 Terms of use: © Jednota českých matematiků a fyziků Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz MATHEMATICS THROUGHOUT THE AGES II A History of Discrete Optimization Helena Durnová PRAGUE 2004 This is a Ph.D. thesis written under the supervision of Prof. Eduard Fuchs, defended at the Department of Mathematics of the Faculty of Science of Masaryk University in Brno on 24st May 2001. Contents 1 Introduction 57 1.1 Optimality and Mathematics . 58 1.2 GraphTheory......................... 64 1.3 ObjectivesoftheThesis . 69 2 Mathematical Background 71 2.1 Basic Definitions in Graph Theory . 71 2.1.1 Directed and undirected graphs . 71 2.1.2 Weighted graphs . 74 2.1.3 Description of graphs . 75 2.2 Algorithms, Heuristics, Complexity . 77 2.2.1 Algorithms and heuristics . 77 2.2.2 Complexity ...................... 78 3 Shortest Path Problem 81 3.1 SpecificBackground . 82 3.2 Origins and Development of Shortest Path Problems . 83 3.3 Early Shortest Path Algorithms . 85 3.3.1 Shimbel,1954. .. .. .. .. .. 85 3.3.2 G. B. -
Combinatorics: a First Encounter
Combinatorics: a first encounter Darij Grinberg Thursday 10th January, 2019at 9:29pm (unfinished draft!) Contents 1. Preface1 1.1. Acknowledgments . .4 2. What is combinatorics?4 2.1. Notations and conventions . .4 1. Preface These notes (which are work in progress and will remain so for the foreseeable fu- ture) are meant as an introduction to combinatorics – the mathematical discipline that studies finite sets (roughly speaking). When finished, they will cover topics such as binomial coefficients, the principles of enumeration, permutations, parti- tions and graphs. The emphasis falls on enumerative combinatorics, meaning the art of computing sizes of finite sets (“counting”), and graph theory. I have tried to keep the presentation as self-contained and elementary as possible. The reader is assumed to be familiar with some basics such as induction proofs, equivalence relations and summation signs, as well as have some experience with mathematical proofs. One of the best places to catch up on these basics and to gain said experience is the MIT lecture notes [LeLeMe16] (particularly their first five chapters). Two other resources to familiarize oneself with proofs are [Hammac15] and [Day16]. Generally, most good books about “reading and writing mathemat- ics” or “introductions to abstract mathematics” should convey these skills, although the extent to which they actually do so may differ. These notes are accompanying two classes on combinatorics (Math 4707 and 4990) I am giving at the University of Minneapolis in Fall 2017. Here is a (subjective and somewhat random) list of recommended texts on the kinds of combinatorics that will be considered in these notes: • Enumerative combinatorics (aka counting): 1 Notes on graph theory (Thursday 10th January, 2019, 9:29pm) page 2 – The very basics of the subject can be found in [LeLeMe16, Chapters 14– 15]. -
Structural Balance: a Generalization of Heider's Theory'
VOL. 63, No. 5 SEPTEMBER, 1956 THE PSYCHOLOGICAL REVIEW STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY' DORWIN CARTWRIGHT AND FRANK HARARY Research Center for Group Dynamics, University of Michigan A persistent problem of psychology will arise to change it toward a state has been how to deal conceptually of balance. These pressures may with patterns of interdependent prop- work to change the relation of affec- erties. This problem has been cen- tion between P and 0, the relation of tral, of course, in the theoretical responsibility between 0 and X, or the treatment by Gestalt psychologists of relation of evaluation between P phenomenal or neural configurations andX. or fields (12, 13, 15). It has also The purpose of this paper is to been of concern to social psychologists present and develop the consequences and sociologists who attempt to em- of a formal definition of balance which ploy concepts referring to social sys- is consistent with Heider's conception tems (18). and which may be employed in a more Heider (19), reflecting the general general treatment of empirical con- field-theoretical approach, has con- figurations. The definition is stated sidered certain aspects of cognitive in terms of the mathematical theory fields which contain perceived people of linear graphs (8, 14) and makes use and impersonal objects or events. of a distinction between a given rela- His analysis focuses upon what he calls tion and its opposite relation. Some the P-O-X unit of a cognitive field, of the ramifications of this definition consisting of P (one person), 0 (an- are then examined by means of other person), and X (an impersonal theorems derivable from the definition entity). -
Matematický Časopis
Matematický časopis Anton Kotzig; Bohdan Zelinka Regular Graphs, Each Edge of Which Belongs to Exactly One s-Gon Matematický časopis, Vol. 20 (1970), No. 3, 181--184 Persistent URL: http://dml.cz/dmlcz/127084 Terms of use: © Mathematical Institute of the Slovak Academy of Sciences, 1970 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz Matematický časopis 20 (1970), No. 3 REGULAR GRAPHS, EACH EDGE OF WHICH BELONGS TO EXACTLY ONE 8 GON ANTON KOTZIG, Bratislava and BOHDAN ZELINKA, Liberec At the Colloquium on Graph Theory at Tihany (1966) the first author expressed the following conjecture: To every pair of positive integers r, s there exists a regular graph G of the degree 2r, in which each edge belongs to exactly one s-gon. We are going to prove this conjecture. The conjecture is evidently true for s = 1 and 5 = 2. We define the (r, s)-graph as a graph whose vertex set is the union of two disjoint sets U and V, while each vertex of U has the degree r, each vertex of V has the degree s and each edge of this graph joins a vertex of U with a vertex of V. We shall prove a theorem, which has the character of a lemma for us. -
Regular Graphs Containing a Given Graph
Regular graphs containing a given graph Autor(en): Akiyama, Jin / Era, Hiroshi / Harary, Frank Objekttyp: Article Zeitschrift: Elemente der Mathematik Band (Jahr): 38 (1983) Heft 1 PDF erstellt am: 03.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37177 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch El Math Vol 38, 1983 15 Der Grundgedanke dieses Beweises ist also, zu zeigen, dass diejenigen Paare (a,b), deren Schrittzahl T(a,b) die Abschätzung von Dixon (Lemma 2) erfüllen, den Hauptbeitrag zu dem gesuchten Mittelwert liefern. Zum Abschluss seien noch einige numerische Ergebnisse angegeben, wie man sie mit einem programmierbaren Taschenrechner errechnen kann. -
BEAUTIFUL CONJECTURES in GRAPH THEORY Adrian Bondy
BEAUTIFUL CONJECTURES IN GRAPH THEORY Adrian Bondy What is a beautiful conjecture? The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, like the colors or the words must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world for ugly mathematics. G.H. Hardy Some criteria: . Simplicity: short, easily understandable statement relating basic concepts. Element of Surprise: links together seemingly disparate concepts. Generality: valid for a wide variety of objects. Centrality: close ties with a number of existing theorems and/or conjectures. Longevity: at least twenty years old. Fecundity: attempts to prove the conjecture have led to new concepts or new proof techniques. Reconstruction Conjecture P.J. Kelly and S.M. Ulam 1942 Every simple graph on at least three vertices is reconstructible from its vertex-deleted subgraphs STANISLAW ULAM Simple Surprising General Central Old F ertile ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ v1 v2 v6 v3 v5 v4 G G − v1 G − v2 G − v3 PSfrag replacements G − v4 G − v5 G − v6 Edge Reconstruction Conjecture F. Harary 1964 Every simple graph on at least four edges is reconstructible from its edge-deleted subgraphs FRANK HARARY Simple Surprising General Central Old F ertile ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ G H PSfrag replacements G H MAIN FACTS Reconstruction Conjecture False for digraphs. There exist infinite families of nonreconstructible tournaments. P.J. Stockmeyer 1977 Edge Reconstruction Conjecture True for graphs on n vertices and more than n log2 n edges. L. Lovasz´ 1972, V. Muller¨ 1977 Path Decompositions T. Gallai 1968 Every connected simple graph on n vertices can 1 be decomposed into at most 2(n + 1) paths TIBOR GALLAI Simple Surprising General Central Old F ertile ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ Circuit Decompositions G. -
Historie Matematiky
30. MEZINÁRODNÍ KONFERENCE HISTORIE MATEMATIKY Jevíþko, 21. 8. – 25. 8. 2009 Praha 2009 1 Památce Jaroslava Šedivého (1934–1988) zakladatele konferencí Historie matematiky Všechna práva vyhrazena. Tato publikace ani žádná její þást nesmí být reprodu- kována nebo šíĜena v žádné formČ, elektronické nebo mechanické, vþetnČ fotokopií, bez písemného souhlasu vydavatele. © J. BeþváĜ, M. BeþváĜová (ed.), 2009 © MATFYZPRESS, vydavatelství Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, 2009 ISBN 978-80-7378-092-0 2 Vážené kolegynČ, vážení kolegové, pĜedkládáme vám sborník obsahující texty tĜí vyzvaných pĜednášek, rekapitulaci uplynulých tĜiceti konferencí, texty delších a kratších sdČlení, které byly pĜihlášeny na jubilejní, 30. mezinárodní konferenci Historie matematiky. Všechny pĜíspČvky byly graficky a typograficky sjednoceny, nČkteré byly upraveny i jazykovČ. ZaĜazen byl též program konference a seznam všech úþastníkĤ, kteĜí se pĜihlásili ve stanoveném termínu (15. kvČten 2009). Sborník vznikl díky finanþní podpoĜe Katedry didaktiky matematiky MFF UK a Ústavu aplikované matematiky FD ýVUT. V první þásti sborníku jsou zaĜazeny hlavní pĜednášky, o nČž byli požádáni zkušení pĜednášející, kteĜí se vČnují matematice, dČjinám matematiky, souvislostem matematiky s ostatními sférami lidské þinnosti, výchovČ doktorandĤ, Ĝízení a organizaci vČdecké práce a mnoha dalším aktivitám. Ve druhé þásti sborníku jsou uveĜejnČny kratší þi delší pĜíspČvky jednotlivých úþastníkĤ. Konference není monotematicky zamČĜena, snažili jsme se poskytnout dostateþný prostor k aktivním vystoupením, diskusím a neformálním setkáním všem pĜihlášeným, tj. matematikĤm, historikĤm matematiky, uþitelĤm vysokých i stĜedních škol, doktorandĤm oboru Obecné otázky matematiky a informatiky i všem dalším zájemcĤm o matematiku a její vývoj. Program letošní konference je opČt pomČrnČ pestrý. VČĜíme, že každý najde Ĝadu témat, která ho zaujmou a potČší, že objeví nové kolegy, pĜátele a spolupracovníky, získá inspiraci, Ĝadu podnČtĤ, motivaci i povzbuzení ke své další odborné práci a ke svému studiu.