Original Article Knockdown of Protein Tyrosine Phosphatase Receptor U Inhibits Growth and Motility of Gastric Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Knockdown of Protein Tyrosine Phosphatase Receptor U Inhibits Growth and Motility of Gastric Cancer Cells Int J Clin Exp Pathol 2014;7(9):5750-5761 www.ijcep.com /ISSN:1936-2625/IJCEP0001557 Original Article Knockdown of protein tyrosine phosphatase receptor U inhibits growth and motility of gastric cancer cells Yongjie Liu1, Zhichuan Zhu1, Zhiqi Xiong1, Jing Zheng1, Zelan Hu1, Jiangfeng Qiu2 1Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Tech- nology, Shanghai 200237, P. R. China; 2Department of Gastrointestinal Surgery, Ningbo First Hospital, Ningbo 315010, P. R. China Received July 26, 2014; Accepted August 23, 2014; Epub August 15, 2014; Published September 1, 2014 Abstract: Protein tyrosine phosphatase receptor U (PTPRU) has been shown to be a tumor suppressor in colon cancer by dephosphorylating β-catenin and reducing the activation of β-catenin signaling. Here, we investigate the expression of PTPRU protein in gastric cancer cell lines, gastric cancer tissues and respective adjacent non-cancer tissues and find that the 130kDa nuclear-localized PTPRU fragment is the main PTPRU isoform in gastric cancer cells, whereas the full-length PTPRU is relatively lowly expressed. The level of the 130kDa PTPRU is higher in gastric cancer tissues than in adjacent non-cancer tissues. Knockdown of endogenous PTPRU in gastric cancer cells us- ing lentivirus-delivered specific shRNA results in the attenuation of cell growth, migration, invasion and adhesion. Knockdown of PTPRU also inhibits tyrosine phosphorylation and transcriptional activity of β-catenin as well as levels of focal adhesion proteins and lysine methylation of histone H3. These results indicate that PTPRU is required for gastric cancer progression and may serve as a potential therapeutic target. Keywords: PTPRU, gastric cancer, proliferation, motility, β-catenin Introduction adhesion, apoptosis, migration, and invasion [3-5]. The role of PTKs in cancers is well charac- Gastric cancer is the second most common terized and their inhibitors have been utilized as cancer type and one of the deadliest epithelial anticancer drugs [6]. Although the role of PTPs malignancies, with a 5-year survival rate of in cancers is not as well studied as that of PTKs, approximate 24% worldwide and high frequen- growing evidence suggests that functional cy of occurrence in Eastern Asia [1, 2]. Currently, aberration of PTPs is associated with the pro- surgical resection remains the most important gression of multiple types of human cancers way to prolong the survival time of gastric can- [7-12]. The PTP superfamily can be divided into cer patients, but nevertheless with a relapse several subfamilies based on the structural rate of more than 50%, especially in patients diversity. Among them, the R2B RPTP subfamily with lymph node metastasis [2]. Compared comprises four members, PTPRU, PTPRM, with other more intensively investigated can- PTPRT and PTPRK. A myriad of reports indicate cers, such as breast cancer, colorectal cancer that R2B RPTPs are negative regulators in and glioma, the molecular mechanisms under- tumorigenesis. For example, PTPRK is mutant lying gastric cancer progression are largely in sporadic endocrine pancreatic tumors, glio- unclear so far. Therefore, developing new strat- ma, and primary central nervous system lym- egies to complement the shortcoming of the phomas [13-15]. It also negatively regulates the current therapies is warranted. proliferation and motility of melanoma and breast cancer cells [12, 16]. The aberrant func- Tyrosine phosphorylation as a molecular switch, tion of PTPRM is associated with the progres- is dynamically regulated by protein tyrosine sion of ovarian carcinoma, prostate cancer, phosphatase (PTPs) and kinases (PTKs). It breast cancer and glioma [17-20]. PTPRT is the plays an important role in various cellular sig- most frequently mutated phosphatase gene in nalings that affect growth, differentiation, cancers including colon, lung, skin and stomach Tyrosine phosphatase receptor U and gastric cancer [21, 22]. Similar to other members of the R2B and 0.25 mg/ml sodium deoxycholate) supple- RPTP subfamily, PTPRU negatively regulates mented with PMSF (Beyotime, Nantong, China), the growth and migration of colon cancer cell phosphatase inhibitor (Sangon, Shanghai, SW480 [23, 24]. In contrast to the tumor sup- China) and protease inhibitor cocktail (Thermo pressive role of full-length and mutant R2B Scientific, Waltham, USA), then mixed with load- RPTPs, some of their proteolytic fragments ing buffer and boiled. Nuclear and cytoplasmic contribute to tumorigenesis [20, 25, 26]. protein fractions were prepared using the Intracellular fragments of PTPRK and PTPRM nuclear and cytoplasmic protein extraction kit generated by furin-initiated proteolytic cleav- (Beyotime). Equal amount of proteins were sep- age can translocate to the nucleus and activate arated by SDS-PAGE and transferred onto poly- the oncogenic signaling [25, 26]. PTPRM frag- vinylidenedifluoride membranes (Millipore, ments positively regulate the growth and motil- Billerica, USA). Membranes were blocked in 5% ity of glioma cells probably in this kind of way nonfat dry milk or bovine serum albumin in [20, 26]. Together, these findings suggest a TBST (Tris-buffer saline with 0.05% Tween-20) pro-oncogenic role of the proteolytic fragments for 1 h, then incubated overnight at 4°C with of R2B RPTPs. antibodies against PTPRU (Sigma-Aldrich, St. Louis, USA), PTPλ (Abcam, Cambridge, UK), The expression, function and mechanism of β-catenin, EGFR, FAK (BD Biosciences, San PTPRU in cancers are not as well characterized Jose, USA), c-Myc, Dnmt1, p-ERK1/2 (T202/ as other R2B RPTPs. In the present study, we Y204), H3K27me2, Histone H3, p-Tyr-102, TCF4 found that the expression of a 130KDa PTPRU (Cell Signaling Technology, Beverly, USA), isoform is higher in gastric cancer tissues than ERK1/2, H3K9me3, paxillin, PYK2 (Bioworld respective adjacent non-cancer tissue. Knoc- Technology, Nanjing, China), cyclin B1, cyclin kdown of PTPRU suppresses growth and motil- D1, VE-cadherin (Boster, Wuhan, China) and ity and β-catenin transcriptional activity of gas- GAPDH (Kangchen, Shanghai, China). Corr- tric cancer cells. We conclude that endogenous esponding horseradish peroxidase-conjugated PTPRU play oncogenic roles in gastric cancer anti-mouse and anti-rabbit secondary antibod- and may be of clinical value. ies (Cell Signaling Technology, Beverly, USA) Materials and methods were used. Protein bands were visualized by photo development using Kodak film. To ana- Tissue samples lyze the relative levels of PTPRU, band gray- scales of PTPRU and GAPDH were quantified A total of 24 pairs of gastric cancer (GC) and using the Adobe Photoshop software and the their adjacent non-cancer tissues were collect- ratio of PTPRU to GAPDH was calculated. ed immediately after surgery from Department of Gastrointestinal Surgery, Ningbo First Lentivirus-mediated shRNA knockdown Hospital after surgery and stored at -80°C until being used. This work was approved by the Lentivirus encoding shRNA plasmids (on vector Ethics Committee of Ningbo First Hospital. pLKD-CMV-GFP-U6-shRNA, Neuron Biotech, Shanghai, China) specifically targeting human Cell culture PTPRU and a scrambled shRNA plasmid were The human gastric cancer cell lines AGS, packed by Neuron Biotech. Western blot and SGC7901, MKN45 and MGC803 were cultured real time PCR were used to validate the knock- in RPMI 1640 medium (Corning, Williamsburg, down efficacy and found that the most efficient USA) supplemented with 10% fetal bovine shRNA sequence was: CCGGGGAGATGATC- serum (Life technologies, Grand Island, USA), CGCATTGATCCCTCAGGGATCAATGCGGATCATCT- 100U/ml penicillin, 0.1 mg/ml streptomycin at CCTTTTTTG. The sequence of the scrabled shRNA was: CCGGTTCTCCGAACGTGTCACG- 37°C in a 5% CO2 incubator. These cell lines were obtained from the cell bank of the Chinese TTTCAAGAGAACGTGACACGTTCGGAGAATTT- Academy of Sciences (Shanghai, China). TTTG. Western blot Immunofluorescence Cells and tissues were collected and lysed on Cell suspension was plated onto sterile glass ice in lysis buffer (20 mM Tris-HCl pH 7.5, 2 mM coverslips in 6-well plates for 24 h, then fixed EDTA, 1% NP-40, 150 mM NaCl, 1 mg/ml SDS with 4% paraformaldehyde at 4°C for 15 min. 5751 Int J Clin Exp Pathol 2014;7(9):5750-5761 Tyrosine phosphatase receptor U and gastric cancer Cells were incubated in turn with blocking buf- were harvested, fixed with 70% (v/v) ethanol fer (3% bovine serum albumin and 0.1% Triton overnight at -20°C, incubated with 50 µg/ml in phosphate-buffered saline) for 1 h, with RNase A (Thermo Scientific) and 50 µg/ml PTPRU or PTPλ antibody at 4°C overnight, with propidium iodide (Sigma-Aldrich) in PBS for 30 biotin labeled secondary antibody (Life tech- min at 37°C in the dark and filtered by sieves to nologies) for 2 h, and with Cy3 labeled avidin get single-cell suspension. Stained nuclei were (Life technologies) and Hoechst 33342 analyzed by a FACSCalibur Flow Cytometry with (Beyotime) for 2 h. Fluorescent images were 10,000 gated events/determination. DNA ploi- taken using a Nikon eclipse Ti-S inverted dy was analyzed by FlowJo software. microscope. Wound-healing assay Real-time quantitative PCR Cells were seeded onto a 6-well plate and Total RNA was extracted using Trizol (Life tech- scraped with a 10 µl pipet tip when they grew nologies), and reverse transcribed using RT into confluent cell monolayer. Culture medium M-MLV (Promega, Beijing, China) with oligo dT. was replaced with serum free RPMI 1640 to Quantitative real-time PCR with SYBR
Recommended publications
  • Identification of Candidate Genes and Pathways Associated with Obesity
    animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits.
    [Show full text]
  • Genetic Alterations of Protein Tyrosine Phosphatases in Human Cancers
    Oncogene (2015) 34, 3885–3894 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Genetic alterations of protein tyrosine phosphatases in human cancers S Zhao1,2,3, D Sedwick3,4 and Z Wang2,3 Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, PTP receptor T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11, which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. Oncogene (2015) 34, 3885–3894; doi:10.1038/onc.2014.326; published online 29 September 2014 INTRODUCTION tyrosine/threonine-specific phosphatases. (4) Class IV PTPs include Protein tyrosine phosphorylation has a critical role in virtually all four Drosophila Eya homologs (Eya1, Eya2, Eya3 and Eya4), which human cellular processes that are involved in oncogenesis.1 can dephosphorylate both tyrosine and serine residues. Protein tyrosine phosphorylation is coordinately regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases 1 THE THREE-DIMENSIONAL STRUCTURE AND CATALYTIC (PTPs). Although PTKs add phosphate to tyrosine residues in MECHANISM OF PTPS proteins, PTPs remove it. Many PTKs are well-documented oncogenes.1 Recent cancer genomic studies provided compelling The three-dimensional structures of the catalytic domains of evidence that many PTPs function as tumor suppressor genes, classical PTPs (RPTPs and non-RPTPs) are extremely well because a majority of PTP mutations that have been identified in conserved.5 Even the catalytic domain structures of the dual- human cancers are loss-of-function mutations.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Protein Phosphatases Cat. no. 330231 PAHS-045ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Protein Phosphatases RT² Profiler PCR Array profiles the gene expression of the 84 most important and well-studied phosphatases in the mammalian genome. By reversing the phosphorylation of key regulatory proteins mediated by protein kinases, phosphatases serve as a very important complement to kinases and attenuate activated signal transduction pathways. The gene classes on this array include both receptor and non-receptor tyrosine phosphatases, catalytic subunits of the three major protein phosphatase gene families, the dual specificity phosphatases, as well as cell cycle regulatory and other protein phosphatases.
    [Show full text]
  • Table 3: Average Gene Expression Profiles by Chromosome
    Supplemental Data Table 1: Experimental Setup Correlation Array Reverse Fluor Array Extraction Coefficient Print Batch (Y/N) mean (range) DLD1-I.1 I A N DLD1-I.2 I B N 0.86 DLD1-I.3 I C N (0.79-0.90) DLD1-I.4 I C Y DLD1 DLD1-II.1 II D N DLD1-II.2 II E N 0.86 DLD1-II.3 II F N (0.74-0.94) DLD1-II.4 II F Y DLD1+3-II.1 II A N DLD1+3-II.2 II A N 0.85 DLD1 + 3 DLD1+3-II.3 II B N (0.64-0.95) DLD1+3-II.4 II B Y DLD1+7-I.1 I A N DLD1+7-I.2 I A N 0.79 DLD1 + 7 DLD1+7-I.3 I B N (0.68-0.90) DLD1+7-I.4 I B Y DLD1+13-I.1 I A N DLD1+13-I.2 I A N 0.88 DLD1 + 13 DLD1+13-I.3 I B N (0.84-0.91) DLD1+13-I.4 I B Y hTERT-HME-I.1 I A N hTERT-HME-I.2 I B N 0.85 hTERT-HME hTERT-HME-I.3 I C N (0.80-0.92) hTERT-HME-I.4 I C Y hTERT-HME+3-I.1 I A N hTERT-HME+3-I.2 I B N 0.84 hTERT-HME + 3 hTERT-HME+3-I.3 I C N (0.74-0.90) hTERT-HME+3-I.4 I C Y Supplemental Data Table 2: Average gene expression profiles by chromosome arm DLD1 hTERT-HME Ratio.7 Ratio.1 Ratio.3 Ratio.3 Chrom.
    [Show full text]
  • Phosphatases Page 1
    Phosphatases esiRNA ID Gene Name Gene Description Ensembl ID HU-05948-1 ACP1 acid phosphatase 1, soluble ENSG00000143727 HU-01870-1 ACP2 acid phosphatase 2, lysosomal ENSG00000134575 HU-05292-1 ACP5 acid phosphatase 5, tartrate resistant ENSG00000102575 HU-02655-1 ACP6 acid phosphatase 6, lysophosphatidic ENSG00000162836 HU-13465-1 ACPL2 acid phosphatase-like 2 ENSG00000155893 HU-06716-1 ACPP acid phosphatase, prostate ENSG00000014257 HU-15218-1 ACPT acid phosphatase, testicular ENSG00000142513 HU-09496-1 ACYP1 acylphosphatase 1, erythrocyte (common) type ENSG00000119640 HU-04746-1 ALPL alkaline phosphatase, liver ENSG00000162551 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPPL2 alkaline phosphatase, placental-like 2 ENSG00000163286 HU-07767-1 BPGM 2,3-bisphosphoglycerate mutase ENSG00000172331 HU-06476-1 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 ENSG00000162813 HU-09086-1 CANT1 calcium activated nucleotidase 1 ENSG00000171302 HU-03115-1 CCDC155 coiled-coil domain containing 155 ENSG00000161609 HU-09022-1 CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) ENSG00000079335 HU-11533-1 CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) ENSG00000081377 HU-06323-1 CDC25A cell division cycle 25 homolog A (S. pombe) ENSG00000164045 HU-07288-1 CDC25B cell division cycle 25 homolog B (S. pombe) ENSG00000101224 HU-06033-1 CDKN3 cyclin-dependent kinase inhibitor 3 ENSG00000100526 HU-02274-1 CTDSP1 CTD (carboxy-terminal domain,
    [Show full text]
  • Supplementary Information the Receptor PTPRU Is a Redox
    Supplementary Information The receptor PTPRU is a redox sensitive pseudophosphatase Iain M. Hay, Gareth W. Fearnley, Pablo Rios, Maja Köhn, Hayley J. Sharpe and Janet E. Deane Supplement contains 10 supplementary figures, 3 supplementary tables and supplementary references. Supplementary Fig. 1. Multiple sequence alignment of the pTyr recognition loop, WPD loop and PTP loop of the 37 classical PTPs, coloured by percentage identity (blue). Key variable residues in PTPRU are highlighted in red. Supplementary Fig. 2. Multiple sequence alignment of PTPRU-D1 sequences from human (Homo sapiens), mouse (Mus musculus), dog (Canis familiaris), chicken (Gallus gallus) and zebrafish (Danio rerio). Sequences are coloured by percentage identity (blue). Key PTP motifs are labelled and boxed in red. The “backdoor” cysteine (C998) which upon oxidation forms an intramolecular disulphide with the catalytic C1085 of the PTP loop is highlighted (*). Supplementary Fig. 3. Replicate of immunoprecipitation (IP) and pNPP assays of FLAG-tagged PTP intracellular domains (ICD). a Immunoblot analysis of FLAG IPs from HEK-293T cells transiently transfected with PTPRK and PTPRU WT and CS inactivating mutant ICDs. b Time course of pNPP dephosphorylation by FLAG IPs from (a). Supplementary Fig. 4. The PTPRU-D1 domain shows no activity against diverse substrates. a Activity of PTPRU-D1, PTPRK-D1 and PTPRK-D2 domains incubated with 100 μM of either pSer or pThr amino acids, measured using BIOMOL Green reagent. Note: the activity levels detected here are very low compared to that of a validated enzyme-substrate reaction (compare to Y axis of panel d). The equivalent activity of the PTPRK D1 and D2 domains suggests this level of activity is non-specific.
    [Show full text]
  • Mir-215 Targeting Novel Genes EREG, NIPAL1 and PTPRU Regulates the Resistance to E
    G C A T T A C G G C A T genes Article miR-215 Targeting Novel Genes EREG, NIPAL1 and PTPRU Regulates the Resistance to E. coli F18 in Piglets 1, 1, 1 1 1,2 Chao-Hui Dai y, Fang Wang y, Shi-Qin Wang , Zheng-Chang Wu , Sheng-Long Wu and Wen-Bin Bao 1,2,* 1 Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; [email protected] (C.-H.D.); [email protected] (F.W.); [email protected] (S.-Q.W.); [email protected] (Z.-C.W.); [email protected] (S.-L.W.) 2 Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China * Correspondence: [email protected]; Tel.: +86-514-8797-9316 These authors contributed equally to this study. y Received: 21 July 2020; Accepted: 3 September 2020; Published: 7 September 2020 Abstract: Previous research has revealed that miR-215 might be an important miRNA regulating weaned piglets’ resistance to Escherichia coli (E. coli) F18. In this study, target genes of miR-215 were identified by RNA-seq, bioinformatics analysis and dual luciferase detection. The relationship between target genes and E. coli infection was explored by RNAi technology, combined with E. coli stimulation and enzyme linked immunosorbent assay (ELISA) detection. Molecular regulating mechanisms of target genes expression were analyzed by methylation detection of promoter regions and dual luciferase activity assay of single nucleotide polymorphisms (SNPs) in core promoter regions. The results showed that miR-215 could target EREG, NIPAL1 and PTPRU genes.
    [Show full text]
  • Protein Tyrosine Phosphatases in Health and Disease Wiljan J
    REVIEW ARTICLE Protein tyrosine phosphatases in health and disease Wiljan J. A. J. Hendriks1, Ari Elson2, Sheila Harroch3, Rafael Pulido4, Andrew Stoker5 and Jeroen den Hertog6,7 1 Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands 2 Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel 3 Department of Neuroscience, Institut Pasteur, Paris, France 4 Centro de Investigacio´ nPrı´ncipe Felipe, Valencia, Spain 5 Neural Development Unit, Institute of Child Health, University College London, UK 6 Hubrecht Institute, KNAW & University Medical Center Utrecht, The Netherlands 7 Institute of Biology Leiden, Leiden University, The Netherlands Keywords Protein tyrosine phosphatases (PTPs) represent a super-family of enzymes bone morphogenesis; hereditary disease; that play essential roles in normal development and physiology. In this neuronal development; post-translational review, we will discuss the PTPs that have a causative role in hereditary modification; protein tyrosine phosphatase; diseases in humans. In addition, recent progress in the development and synaptogenesis analysis of animal models expressing mutant PTPs will be presented. The Correspondence impact of PTP signaling on health and disease will be exemplified for the J. den Hertog, Hubrecht Institute, fields of bone development, synaptogenesis and central nervous system dis- Uppsalalaan 8, 3584 CT Utrecht, eases. Collectively, research on PTPs since the late 1980’s yielded the The Netherlands cogent view that development of PTP-directed
    [Show full text]
  • Protein Tyrosine Phosphatase Receptor Type Γ Is a Functional Tumor Suppressor Gene Specifically Downregulated in Chronic Myeloid Leukemia
    Published OnlineFirst October 19, 2010; DOI: 10.1158/0008-5472.CAN-10-0258 Tumor and Stem Cell Biology Cancer Research Protein Tyrosine Phosphatase Receptor Type γ Is a Functional Tumor Suppressor Gene Specifically Downregulated in Chronic Myeloid Leukemia Marco Della Peruta1, Giovanni Martinelli4, Elisabetta Moratti1, Davide Pintani1, Marzia Vezzalini1, Andrea Mafficini1,3, Tiziana Grafone4, Ilaria Iacobucci4, Simona Soverini4, Marco Murineddu5, Fabrizio Vinante2, Cristina Tecchio2, Giovanna Piras5, Attilio Gabbas5, Maria Monne5, and Claudio Sorio1,3 Abstract Chronic myelogenous leukemia (CML) is the most common myeloproliferative disease. Protein tyrosine phosphatase receptor type γ (PTPRG) is a tumor suppressor gene and a myeloid cell marker expressed by CD34+ cells. Downregulation of PTPRG increases colony formation in the PTPRG-positive megakaryocytic cell lines MEG-01 and LAMA-84 but has no effect in the PTPRG-negative cell lines K562 and KYO-1. Its over- expression has an oncosuppressive effect in all these cell lines and is associated with myeloid differentiation and inhibition of BCR/ABL-dependent signaling. The intracellular domain of PTPRG directly interacts with BCR/ABL and CRKL, but not with signal transducers and activators of transcription 5. PTPRG is downregulated at the mRNA and protein levels in leukocytes of CML patients in both peripheral blood and bone marrow, including CD34+ cells, and is reexpressed following molecular remission of disease. Reexpression was associated with a loss of methylation of a CpG island of PTPRG promoter occurring in 55% of the patients analyzed. In K562 cell line, the DNA hypomethylating agent 5-aza-2′-deoxycytidine induced PTPRG expression and caused an inhibition of colony formation, partially reverted by downregulation of PTPRG expression.
    [Show full text]
  • Flexible Visualization of the Human Phosphatome
    bioRxiv preprint doi: https://doi.org/10.1101/701508; this version posted July 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CoralP: Flexible visualization of the human phosphatome Amit Min1, Erika Deoudes1, Marielle L. Bond1, Eric S. Davis2, Douglas H. Phanstiel1,2,3,4,5,6 1Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA 2Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA 3Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA 4Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA 5Lineberger Comprehensive Cancer Research Center, University of North Carolina, Chapel Hill, NC 27599, USA 6Correspondence: [email protected] Protein phosphatases and kinases play critical roles phosphatases, there exists a great need for methods to in a host of biological processes and diseases via the analyze, interpret, and communicate experimental results removal and addition of phosphoryl groups. While within the context of the entire protein family (Chen et al., kinases have been extensively studied for decades, 2017). recent findings regarding the specificity and activities While numerous methods have been developed to of phosphatases have generated an increased visualize the human kinome (Chartier et al., 2013; Eid et interest in targeting phosphatases for pharmaceutical al., 2017; Metz et al., 2018), no such software exists for development.
    [Show full text]
  • Impact of MLL5 Expression on Decitabine Efficacy and DNA Methylation in Acute Myeloid Leukemia
    Acute Myeloid Leukemia SUPPLEMENTARY APPENDIX Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia Haiyang Yun,1 Frederik Damm,2 Damian Yap,3,4 Adrian Schwarzer,5 Anuhar Chaturvedi,1 Nidhi Jyotsana,1 Michael Lübbert,6 Lars Bullinger,7 Konstanze Döhner,7 Robert Geffers,8 Samuel Aparicio,3,4 R. Keith Humphries,9,10 Arnold Ganser,1 and Michael Heuser1 1Department of Hematology, Hemostasis, Oncology and Stem cell Transplantation, Hannover Medical School, Germany; 2Department of Hematology, Oncology, and Tumor Immunology, Charité, Berlin, Germany; 3Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada; 4Department of Pathology and Laboratory Medi- cine, University of British Columbia, Vancouver, BC, Canada; 5Institute of Experimental Hematology, Hannover Medical School, Germany; 6Division of Hematology and Oncology, University of Freiburg Medical Center, Germany; 7Department of Internal Medicine III, University Hospital of Ulm, Germany; 8Department of Cell Biology and Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany; 9Terry Fox Laboratory, British Columbia Cancer Agency, Vancou- ver, BC, Canada; and 10Department of Medicine, University of British Columbia, Vancouver, BC, Canada ©2014 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2013.101386 *These authors contributed equally to this work. †These authors contributed equally to this work. Manuscript received on November 19, 2013. Manuscript accepted on May 23, 2014. Correspondence: [email protected] Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia Haiyang Yun1, Frederik Damm2, Damian Yap3,4, Adrian Schwarzer5, Anuhar Chaturvedi1, Nidhi Jyotsana1, Michael Lübbert6, Lars Bullinger7, Konstanze Döhner7, Robert Geffers8, Samuel Aparicio3,4, R.
    [Show full text]