Stable Oxygen Isotope Chemostratigraphy and Paleotemperature Regime of Mosasaurs at Bentiaba, Angola

Total Page:16

File Type:pdf, Size:1020Kb

Stable Oxygen Isotope Chemostratigraphy and Paleotemperature Regime of Mosasaurs at Bentiaba, Angola Netherlands Journal of Geosciences —– Geologie en Mijnbouw | 94 – 1 | 137-143 | 2015 doi: 10.1017/njg.2015.1 Stable oxygen isotope chemostratigraphy and paleotemperature regime of mosasaurs at Bentiaba, Angola C. Strganac1,2,*,L.L.Jacobs1,M.J.Polcyn1,K.M.Ferguson1,O.Mateus3,4,A.Ol´ımpio Gonçalves5, M.-L. Morais5 & T. da Silva Tavares5,6 1 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, USA 2 Perot Museum of Nature and Science, Dallas, Texas 75201, USA 3 GeoBioTec, Faculdade de Ciˆencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 4 Museu da Lourinh~a, Rua Jo~ao Luis de Moura, 2530-157, Lourinh~a, Portugal 5 Departamento de Geologia, Faculdade de Ciencas, Universidade Agostinho Neto, Avenida 4 de Fevereiro 7, Luanda, Angola 6Universit´e de Bourgogne, Dijon, France * Corresponding author. Email: [email protected] Manuscriptreceived:2June2014,accepted:6January2015 Abstract Stable oxygen isotope values of inoceramid marine bivalve shells recovered from Bentiaba, Angola, are utilised as a proxy for paleotemperatures during the Late Cretaceous development of the African margin of the South Atlantic Ocean. The d18O values derived from inoceramids show a long-term increase from –3.2‰ in the Late Turonian to values between –0.8 and –1.8‰ in the Late Campanian. Assuming a constant oceanic d18Ovalue,an∼2‰ increase may reflect cooling of the shallow marine environment at Bentiaba by approximately 10°. Bentiaba values are offset by about +1‰ from published records for bathyal Inoceramus at Walvis Ridge. This offset in d18O values suggests a temperature difference of ∼5° between coastal and deeper water offshore Angola. Cooler temperatures implied by the d18O curve at Bentiaba coincide with the stratigraphic distribution of diverse marine amniotes, including mosasaurs, at Bentiaba. Keywords: Cretaceous, South Atlantic Ocean, oxygen, paleotemperature, inoceramid Introduction vertebrates from the eastern South Atlantic (Jacobs et al., 2006). The oldest mosasaurs knownfromtheSouthAtlantic We present a temporally calibrated, shallow marine d18Ochemo- Ocean, Angolasaurus bocagei and Tylosaurus iembeensis,are stratigraphic curve for Bentiaba, southern Angola (Fig. 1), found at Iembe, north of the capital Luanda, in Late Turonian relating stable oxygen isotopes of this portion of the southern nearshore deposits that also produced the sauropod dinosaur hemisphere to values from the Walvis Ridge offshore Angola and Angolatitan adamastor (Mateus et al., 2011). Marine amniote elsewhere around the globe. The presented d18O values are used remains known from Iembe also include halisaurine vertebrae to estimate the paleotemperature regime in which mosasaurs and a marine turtle, Angolachely mbaxi (Mateus et al., 2009, and other marine amniotes along this portion of southwest 2012; Polcyn et al., 2012). Africa lived throughout much of the Late Cretaceous. The greatest concentration of mosasaurs in Angola comes Mosasaurs have a fossil record extending from the Cenoma- from Upper Campanian–Maastrichtian sediments at Bentiaba nian, approximately 98 Ma, to their extinction at the end of (Strganac et al., 2014b), but there are significant exposures the Cretaceous at 66 Ma (Jacobs et al., 2005a,b; Polcyn et al., below the fossil-bearing horizons, which range in age from Cen- 1999, 2014). Since 2005 our team, Projecto PaleoAngola, has omanian to Santonian. The chronological context for Bentiaba conducted field expeditions in Cretaceous and younger rocks is provided by the magnetostratigraphy and a d13C chemostrati- of coastal Angola, greatly improving the fossil record of graphic framework anchored by an 84.5 Ma 40Ar/39Ar whole-rock © Netherlands Journal of Geosciences Foundation 2015 137 Downloaded from https://www.cambridge.org/core. IP address: 170.106.34.90, on 03 Oct 2021 at 06:58:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/njg.2015.1 Netherlands Journal of Geosciences —– Geologie en Mijnbouw 94 – 1 | 2015 latitudinal temperature gradients. The current study provides temperature estimates of shallow marine environments, below wave base, for much of Late Cretaceous time as the South Atlan- tic was growing and was inhabited by diverse assemblages of marine amniotes. Cretaceous d18O records have been used to elucidate changes in ocean circulation as well as temperature (Cramer et al., 2009; Friedrich et al., 2009, 2012). Most paleotempera- ture records utilise benthic foraminifera, whose d18O values re- flect offshore deep marine environments with little to no influence by meteoric input or fluctuations in salinity (Gross- man, 2012). These methods can be extended to shallow shelf setting unaffected by high freshwater influx (Sessa et al., 2012), which we assume to be the case at Bentiaba (Strganac et al., 2014b). The d18O curve from Bentiaba provides a shallow marine temperature curve that can be compared to the long- term benthic records to track broader temperature trends, to Fig. 1. Location map of Bentiaba, Angola. Inset shows location of Angola obtain indications of larger circulation patterns, and to pro- within Africa, offshore basins labelled in capital letters. Note location of vide a paleotemperature context for evolution in the marine DSDP Hole 530A, which is discussed in the text. Modified from Strganac realm. et al. (2014a). The Late Cretaceous marks the transition from global high temperatures during the Late Cenomanian-Turonian climatic radiometric date on an intercalated basalt of the Ombe Formation, maximum and progressing through the cooler temperatures which is consistent with ammonite biostratigraphy (Strganac that characterise much of the Cenozoic. Cretaceous tempera- et al., 2014a). The Bentiaba d18O curve presented here was con- ture trends coincide with significant paleoceanographic structed as a complement to the d13C record presented by Strganac events, including Oceanic Anoxic Event 2 at the Cenomanian- et al. (2014a). Turonian Boundary, which is a widespread period of rapid The mosasaur fauna of the Campanian Baba Formation is burial of organic matter related to marine productivity and en- fragmentary and includes both russellosaurians and mosasaurines, hanced ocean stratification (Arthur et al., 1988; Erbacher while that of the overlying Maastrichtian Mocuio Formation is pre- et al., 2001, Forster et al., 2008; Friedrich et al., 2012; Strga- dominately mosasaurine (Strganac et al., 2014b). Within the Mocuio nac et al., 2014a). Connections between major ocean basins in- Formation, the mid-Maastrichtian (approximately 71.5 Ma) Bench creased after the Turonian as a result of tectonic drift of 19 fauna is particularly rich (Schulp et al., 2006, 2008, 2013; Polcyn continents, allowing cool waters derived from high latitudes et al., 2010, 2014; Mateus et al., 2012), and it is the subject of to circulate equatorially, contributing to declining global tem- a paleoecological analysis (Strganac et al., 2014b). The paleogeo- perature (Hay et al., 1999; Miller et al., 1999; Cramer et al., graphic context of Angolan vertebrates was initially examined in 2009; Robinson & Vance, 2012). The d18Ostratigraphiccurve Jacobs et al. (2009, 2011) and Polcyn et al. (2010), and their paleo- presented here is a proxy for shallow marine temperature ecology was examined initially in Robbins et al. (2008) and Polcyn change at Bentiaba during the Late Cretaceous development et al. (2010, 2014). of the South Atlantic. Little paleotemperature research relevant to this study has The mosasaur-bearing portion of the Bentiaba section lies been conducted in Africa. An analysis of paleosols in the Samba above the Ombe basalt in the Baba and Mocuio formations drill core from the Congo Basin (Cahen et al., 1959), represent- (Fig. 2). Carbonate cement creates benches in the Mocuio ing the interior of Gondwana prior to the opening of the South Formation, which are numbered in the section. Vertebrates Atlantic, indicates Jurassic average annual soil temperatures occur throughout the Baba and Mocuio formations. The Cam- between 25 and 4063°C, with an average of 33°C, s =7.6°C panian Baba Formation preserves a fragmentary but mixed rus- (Myers et al., 2011), accompanied by low biological productivity sellosaurine-mosasaurine fauna extending into the lower part (Myers et al., 2012). Myers et al. (2011) also presented a Lower of the Mocuio Formation. In the Lower Maastrichtian part of Cretaceous soil temperature estimate of 2363°C. the Mocuio Formation, the Bench 19 Fauna is dominated by Temperature tolerances for mosasaurs of Cenomanian age, mosasaurines. The highest levels of the Mocuio fauna, which near the time of origin for the group, were considered by Jacobs we interpret as Upper Maastrichtian (Strganac et al., 2014a), et al. (2005b). Kolodny & Luz (1991) reported the d18Ovalueof preserve the globidensine Carinodens and a large, derived the Cenomanian shark Cretolamna appendiculata from Angola, Prognathodon (Mateusetal.,2012;Schulpetal.,2013; included by Puc´eat et al. (2007) in their study of Cretaceous Strganac et al., 2014b). 138 Downloaded from https://www.cambridge.org/core. IP address: 170.106.34.90, on 03 Oct 2021 at 06:58:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/njg.2015.1 Netherlands Journal of Geosciences —– Geologie en Mijnbouw 94 – 1 | 2015 Fig. 2. Section at Bentiaba with d13Candinoceramidd18O stratigraphic
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • Angola: Museum in the Ground
    ANGOLA: MUSEUM IN THE GROUND Good Fossils Ocean Currents and Source Rocks Dinosaur Extinction (K-Pg Boundary) Angolasaurus (90 million year old marine lizard, also found in Texas) Louis L. Jacobs Roy M. Huffington Department of Earth Sciences Southern Methodist University, Dallas, Texas InIn 20052005 wewe wentwent toto AngolaAngola becausebecause fossilsfossils ofof giantgiant marinemarine lizardslizards (mosasaurs)(mosasaurs) hadhad beenbeen reportedreported inin thethe 1960’s.1960’s. CouldCould wewe findfind more?more? ColleaguesColleagues atat UniversidadeUniversidade Agostinho Agostinho Neto Neto were were contactedcontacted andand wewe brieflybriefly visitedvisited thethe field.field. BasedBased onon ourour preliminarypreliminary trip,trip, thethe NationalNational GeographicGeographic SocietySociety andand thethe PetroleumPetroleum ResearchResearch FundFund ofof thethe AmericanAmerican ChemicalChemical SocietySociety fundedfunded expeditionsexpeditions inin 20062006 andand 2007.2007. In cooperation with Universidade Agostinho Neto and ISPRA (Lubango). We have shown that: 1. The fossils of Angola are a “Museum in the Ground.” 2. The geologic context of the fossils gives clues to past ocean currents and productivity leading to petroleum source rocks. 3. The rocks of Angola record events of worldwide interest, such as the extinction of mosasaurs and dinosaurs, and the precise position of ancient shores. IEMBE (north of Luanda) 90 million years old Drawing of original specimen, 1964 Home of Discovery site of Angolasaurus in 1962 Angolasaurus Discovery site in 2006 The best specimen, 2006 Ammonite in Iembe cliff Angolasaurus before excavation Excavation of front flipper of Angolasaurus (note ammonite lying next to fingers) Shark Vertebrae, Iembe, 90 Million Years The first dinosaur, a sauropod, found in Angola, at Iembe. Excavation pit for front leg of sauropod dinosaur Professor Jacobs (SMU) excavating arm bone of Angolan dinosaur Unexcavated Turtle Skull BENTIABA 68 Ma, 15ºS Each red point is a good fossil.
    [Show full text]
  • Redalyc.Angolatitan Adamastor, a New Sauropod Dinosaur and the First Record from Angola
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MATEUS, OCTÁVIO; JACOBS, LOUIS L.; SCHULP, ANNE S.; POLCYN, MICHAEL J.; TAVARES, TATIANA S.; BUTA NETO, ANDRÉ; MORAIS, MARIA LUÍSA; ANTUNES, MIGUEL T. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 221-233 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 15:47 — page 221 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 221-233 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola , OCTÁVIO MATEUS1 2, LOUIS L. JACOBS3, ANNE S. SCHULP4, MICHAEL J. POLCYN3, TATIANA S. TAVARES5, ANDRÉ BUTA NETO5, MARIA LUÍSA MORAIS5 and MIGUEL T. ANTUNES6 1CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 2Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal 3Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA 4Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL6211 KJ Maastricht, The Netherlands 5Geology Department, Universidade Agostinho Neto, Av.
    [Show full text]
  • Russellosaurus Coheni N. Gen., N. Sp., a 92 Million-Year-Old Mosasaur from Texas (USA), and the Definition of the Parafamily Russellosaurina
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 84 - 3 | 321 - 333 | 2005 Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina M.J. Polcyn1'* & G.L. Bell Jr.2 1 Shuler Museum of Paleontology, Southern Methodist University, Dallas, Texas 75275, USA. 2 Guadalupe Mountains National Park, Salt Flat, Texas 79847, USA. * Corresponding author. Email: [email protected] Manuscript received: November 2004; accepted: January 2005 Abstract A new mosasaur, Russellosaurus coheni, is described from the Collignoniceras woollgari Zone (lower Middle Turonian) at Cedar Hill, Dallas County, Texas. At approximately 92 Ma, it is the oldest well-preserved mosasaur skull from North America. It possesses characters diagnostic of Plioplatecarpinae but retains numerous plesiomorphies as well. Phylogenetic analysis indicates a close relationship with Yaguarasaurus columbianus, and these two, together with Tethysaurus nopcsai, form a clade that occupies a position basal to the divergence of the subfamilies Tylosaurinae and Plioplatecarpinae. Russellosaurus coheni is proposed as the nominal taxon of a new mosasaur clade, parafamily taxon novum Russellosaurina, which includes Plioplatecarpinae, Tylosaurinae, their common ancestor and all descendants. Tethysaurus retains a plesiopedal limb and girdle morphology, and along with Russellosaurus and Yaguarasaurus, cranial plesiomorphies. Dallasaurus turneri, a temporally and geographically sympatric plesiopedal mosasaur, occupies a basal position within Mosasaurinae. This phyletic arrangement confirms that marine adaptations, such as development of paddle-like limbs, occurred independently in at least two lineages of mosasaurs, once within Mosasaurinae and once within Russellosaurina. Keywords: Mosasaur, Plioplatecarpinae, Tethysaurus, Turonian, Yaguarasaurus Introduction knowledge of the early evolutionary history of the group.
    [Show full text]
  • CURRICULUM VITAE Louis L. Jacobs EDUCATION BS University
    CURRICULUM VITAE Louis L. Jacobs EDUCATION B.S. University of Southwestern Louisiana 1970 M.S. University of Arizona 1973 Ph.D. University of Arizona 1977 EXPERIENCE 1966 Offshore Seismic Crew, Geophysical Services, Inc. 1967 Merchant Marine 1971-1977 Teaching or Research Assistantship, University of Arizona 1977-1980 Research Paleontologist, Museum of Northern Arizona 1977-1981 Geologist (WAE), United States Geological Survey 1980 Lecturer (Stratigraphy), University of Arizona 1981-1983 Head, Division of Paleontology, National Museums of Kenya 1981-1983 Research Associate, University of Arizona 1983-1987 Assistant Professor, Department of Geological Sciences, Southern Methodist University 1983-1984 Adjunct Professor, Department of Anthropology, Southern Methodist University 1983-1985 Curator of Vertebrate Paleontology, Shuler Museum of Paleontology 1983-1984 Adjunct Curator, Dallas Museum of Natural History 1970- Field work mainly in U.S., Mexico, Pakistan, Kenya, Malawi, Cameroon, Yemen, Israel, Mongolia, Angola, Antarctica 1985-1987 Associate Director, Shuler Museum of Paleontology 1987-1992 Associate Professor, Department of Geological Sciences, Southern Methodist University 1987-2000 Director, Shuler Museum of Paleontology 1989 Visiting Scholar, Harvard University 1992- Professor, Department of Geological Sciences, Southern Methodist University 1999 -2000 Museum Director ad interim, Dallas Museum of Natural History 2000- President, Institute for the Study of Earth and Man, Southern Methodist University 2009-2010 Specially Appointed
    [Show full text]
  • Evolution Et Extinction Des Reptiles Marins Au Cours Du Mesozoique
    EVOLUTION ET EXTINCTION DES REPTILES MARINS AU COURS DU MESOZOIQUE par Nathalie BARDET * SOMMAIRE Page Résumé, Abstract . 178 Introduction ..................................................................... 179 Matériel et méthode . 181 La notion de reptile marin . 181 Etude systématique . 182 Etude stratigraphique. 183 Méthodes d'analyse. 183 Systématique et phylogénie. 184 Le registre fossile des reptiles marins . 184 Affinités et phylogénie des reptiles marins. 186 Analyses taxinomique et stratigraphique. 187 Testudines (Chelonia) . 187 Squamata, Lacertilia . 191 Squamata, Serpentes. 193 Crocodylia ............................................................... 194 Thalattosauria . 195 Hupehsuchia . 196 Helveticosauroidea . 197 Pachypleurosauroidea . 197 Sauropterygia .... 198 Placodontia. 198 * Laboratoire de Paléontologie des Vertébrés, URA 1761 du CNRS, Université Pierre et Marie Curie, Case 106,4 Place Jussieu, 75252 Paris cédex 05, France. Mots-clés: Reptiles marins, Tortues, Lézards, Serpents, Crocodiles, Thalattosaures, Hupehsuchiens, Helveticosaures, Pachypleurosaures, Nothosaures, Placodontes, Plésiosaures, Ichthyosaures, Mésozoïque, Evolution, Extinction, Assemblages et Renouvellements fauniques. Key-words: Marine Reptiles, Turtles, Lizards, Snakes, Crocodiles, Thalattosaurs, Hupehsuchians, Helveticosaurs, Pachypleurosaurs, Nothosaurs, Placodonts, Plesiosaurs, Ichthyosaurs, Mesozoic, Evolution, Extinction, Faunal Assemblages and Turnovers. Palaeovertebrata. Montpellier. 24 (3-4): 177-283, 13 fig. (Reçu le 4 Juillet 1994,
    [Show full text]
  • Download a PDF of This Web Page Here. Visit
    Dinosaur Genera List Page 1 of 42 You are visitor number— Zales Jewelry —as of November 7, 2008 The Dinosaur Genera List became a standalone website on December 4, 2000 on America Online’s Hometown domain. AOL closed the domain down on Halloween, 2008, so the List was carried over to the www.polychora.com domain in early November, 2008. The final visitor count before AOL Hometown was closed down was 93661, on October 30, 2008. List last updated 12/15/17 Additions and corrections entered since the last update are in green. Genera counts (but not totals) changed since the last update appear in green cells. Download a PDF of this web page here. Visit my Go Fund Me web page here. Go ahead, contribute a few bucks to the cause! Visit my eBay Store here. Search for “paleontology.” Unfortunately, as of May 2011, Adobe changed its PDF-creation website and no longer supports making PDFs directly from HTML files. I finally figured out a way around this problem, but the PDF no longer preserves background colors, such as the green backgrounds in the genera counts. Win some, lose some. Return to Dinogeorge’s Home Page. Generic Name Counts Scientifically Valid Names Scientifically Invalid Names Non- Letter Well Junior Rejected/ dinosaurian Doubtful Preoccupied Vernacular Totals (click) established synonyms forgotten (valid or invalid) file://C:\Documents and Settings\George\Desktop\Paleo Papers\dinolist.html 12/15/2017 Dinosaur Genera List Page 2 of 42 A 117 20 8 2 1 8 15 171 B 56 5 1 0 0 11 5 78 C 70 15 5 6 0 10 9 115 D 55 12 7 2 0 5 6 87 E 48 4 3
    [Show full text]
  • For Review Only
    Zoological Journal of the Linnean Society Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution Journal:For Zoological Review Journal of the Linnean Only Society Manuscript ID ZOJ-05-2018-3315.R1 Manuscript Type: Original Article biogeography < Geography, dispersal < Geography, extinction < Evolution, Gondwana < Palaeontology, Mesozoic < Palaeontology, Laurasia < Keywords: Palaeontology, Jurassic < Palaeontology, Cretaceous < Palaeontology, phylogenetics < Phylogenetics The Late Jurassic Tendaguru Formation of Tanzania, southeastern Africa, records a diverse and abundant sauropod fauna, including the flagellicaudatan diplodocoids Dicraeosaurus and Tornieria, and the brachiosaurid titanosauriform Giraffatitan. However, the taxonomic affinities of other sympatric sauropod taxa and remains are poorly understood. Here, we critically reassess and redescribe these problematic taxa, and present the largest phylogenetic analysis for sauropods (117 taxa scored for 542 characters) to explore their placement within Eusauropoda. A full re-description of the holotype of Janenschia, and all referable remains, supports its validity and placement as a non- Abstract: neosauropod eusauropod. New information on the internal pneumatic tissue structure of the anterior dorsal vertebrae of the enigmatic Tendaguria tanzaniensis, coupled with a full re-description, results in its novel placement as a turiasaur. A previously referred caudal sequence cannot be assigned to Janenschia and displays several features that indicate a close relationship with Middle–Late Jurassic East Asian mamenchisaurids. It can be diagnosed by six autapomorphies, and we erect the new taxon Wamweracaudia keranjei n. gen. n. sp. The Tendaguru Formation shares representatives of nearly all sauropod lineages with Middle Jurassic–earliest Cretaceous global faunas, but displays a greater range of diversity than any of those faunas considered individually.
    [Show full text]
  • Dinosaur Genera
    DINOSAUR GENERA since: 28-October-1995 / last updated: 29-September-2021 Thank you to George Olshevsky ("Mesozoic Meanderings #3") for the original listing on 23-October-1995 and the help to keep this list current; and also to all the other contributors from the Dinosaur Mailing List. NOW available: d-genera.pdf Genera count = 1742 (including 114 not presently considered to be dinosaurian) [nomen ex dissertatione] = name appears in a dissertation [nomen manuscriptum] = unpublished name in a manuscript for publication [nomen dubium] = name usually based on more than one type specimen [nomen nudum] = name lacking a description and/or a type specimen [nomen oblitum] = name forgotten for at least 50 years [nomen rejectum] = name rejected by the ICZN non = incorrect reference by the first to a name by the second author vide = name attributed to the first author by the second author / = name preoccupied by the second author JOS → Junior Objective Synonym of the indicated genus JSS → Junior Subjective Synonym of the indicated genus PSS → Possible Subjective Synonym of the indicated genus SSS → Suppressed Senior Synonym of the indicated genus • Aardonyx: A.M. Yates, M.F. Bonnan, J. Neveling, A. Chinsamy & M.G. Blackbeard, 2009 • "Abdallahsaurus": G. Maier, 2003 [nomen nudum → Giraffatitan] • Abdarainurus: A.O. Averianov & A.V. Lopatin, 2020 • Abelisaurus: J.F. Bonaparte & F.E. Novas, 1985 • Abrictosaurus: J.A. Hopson, 1975 • Abrosaurus: Ouyang H, 1989 • Abydosaurus: D. Chure, B.B. Britt, J.A. Whitlock & J.A. Wilson, 2010 • Acantholipan: H.E. Rivera-Sylva, E. Frey, W. Stinnesbeck, G. Carbot-Chanona, I.E. Sanchez-Uribe & J.R. Guzmán-Gutiérrez, 2018 • Acanthopholis: T.H.
    [Show full text]
  • Post-Gondwana Africa and the Vertebrate History of the Angolan Atlantic Coast
    Memoirs of Museum Victoria 74: 343–362 (2016) Published 2016 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast LOUIS L. JACOBS1,*, MICHAEL J. POLCYN1, OCTÁVIO MATEUS2, ANNE S. SCHUlp3, ANTÓNIO OLÍmpIO GONÇALVES4 AND MARIA LUÍSA MORAIS4 1 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States ([email protected]; [email protected]) 2 GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, and Museu da Lourinhã, Rua João Luis de Moura, 2530-157, Lourinhã, Portugal ([email protected]) 3 Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, The Netherlands; Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands ([email protected]) 4 Departamento de Geologia, Faculdade de Ciências, Universidade Agostinho Neto, Avenida 4 de Fevereiro 7, Luanda, Angola ([email protected]; [email protected]) * To whom correspondence should be addressed. E-mail: [email protected] Abstract Jacobs, L.L., Polcyn, M.J., Mateus, O., Schulp, A.S., Gonçalves, A.O. and Morais M.L. 2016. Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria 74: 343–362. The separation of Africa from South America and the growth of the South Atlantic are recorded in rocks exposed along the coast of Angola. Tectonic processes that led to the formation of Africa as a continent also controlled sedimentary basins that preserve fossils.
    [Show full text]
  • The Mosasaur Fossil Record Through the Lens of Fossil Completeness
    This is a repository copy of The Mosasaur Fossil Record Through the Lens of Fossil Completeness. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/130080/ Version: Accepted Version Article: Driscoll, DA, Dunhill, AM orcid.org/0000-0002-8680-9163, Stubbs, TL et al. (1 more author) (2018) The Mosasaur Fossil Record Through the Lens of Fossil Completeness. Palaeontology, 62 (1). pp. 51-75. ISSN 0031-0239 https://doi.org/10.1111/pala.12381 © 2018 The Palaeontological Association This is the peer reviewed version of the following article: Driscoll, DA, Dunhill, AM, Stubbs, TL et al. (2018) The Mosasaur Fossil Record Through the Lens of Fossil Completeness. Palaeontology. ISSN 0031-0239, which has been published in final form at https://doi.org/10.1111/pala.12381. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • A Review of Australian Mosasaur Occurrences
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 84 - 3 | 307 - 313 | 2005 A review of Australian mosasaur occurrences B.P. Kear1'2'*, J.A. Long34 & J.E. Martin5 1 School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005. 2 South Australian Museum, North Terrace, Adelaide, South Australia 5000. 3 Western Australian Museum, Perth, Western Australia 6000. 4 Museum Victoria, Melbourne, Victoria, Australia 3000 (current address). 5 Museum of Geology, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA. * Corresponding author. Email: [email protected] Manuscript received: August 2004; accepted: December 2004 Abstract Mosasaurs are rare in Australia with fragmentary specimens known only from the Cenomanian-lower Turonian Molecap Greensand (Perth Basin), Campanian - lower Maastrichtian Korojon Calcarenite (Carnarvon Basin), and upper Maastrichtian Miria Formation (Carnarvon Basin), Western Australia. These units were laid down during a near-continuous marine inundation of the western margin of the Australian landmass (which followed separation from India in the Valanginian and genesis of the Indian Ocean) in the Early-Late Cretaceous. The Australian mosasaur record incorporates evidence of derived mosasaurids (mainly plioplatecarpines); however, as yet no specimen can be conclusively diagnosed to genus or species level. The fragmentary nature of the remains provides little basis for direct palaeobiogeographic comparisons. However, correlation with existing data on associated vertebrates, macroinvertebrates and microfossils suggests that the Western Australian mosasaur fauna might have been transitional in nature (particularly following palaeobiogeographic separation of the northern and southern Indian Oceans during the mid- Campanian), potentially sharing elements with both northern Tethyan and austral high-latitude regions.
    [Show full text]