Michelle Maxine Mekarski

Total Page:16

File Type:pdf, Size:1020Kb

Michelle Maxine Mekarski The Origin and Evolution of Aquatic Adaptations in Cretaceous Squamates by Michelle Maxine Mekarski A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences University of Alberta © Michelle Maxine Mekarski, 2017 i ABSTRACT Three species of Cretaceous marine squamates are described or redescribed. The first, Pontosaurus ribaguster is described from a relatively complete specimen discovered on Hvar Island, Croatia. Preservation of identifiable nektonic teleosts within the gastric cavity (the first identifiable gastric contents described from a dolichosaur) provide strong evidence of a primarily piscivorous diet. The second described species is a new genus and species of plesiopedal mosasauroid, Portunatasaurus krambergi, from the Cenomanian-Turonian (U. Cretaceous) of Dugi Otok, Croatia. The specimen preserves an exquisite forelimb showing a unique anatomy that appears to be transitional between Aigialosaurus and Mosasaurus. The new and unique limb anatomy contributes to a revised scenario of mosasauroid paddle evolution, whereby the abbreviation of the forelimb and the hydrofoil shape of the paddle evolves either earlier in the mosasaur lineage than previously thought, or more times than previously considered. The third description is a reassessment of the lizard Aphanizocnemus libanensis. Re-examination suggests that characters cited as supporting varanoid-dolichosaur affinities are misinterpreted, are common to many squamates, or are homoplastic and tightly linked to aquatic adaptation. Available data support the conclusion that Aphanizocnemus is not a dolichosaur, a varanoid, nor in fact an anguimorph, but may represent a new form of aquatic scincomorph, a group not previously recognized as having evolved aquatic adaptations. The three descriptions highlight morphological data that has been erroneously used, or were unavailable for, previous studies. A systematic analysis of the Pythonomorpha (inclusive of Pontosaurus ribaguster and Pontosaurus krambergi¸ and exclusive of A. libanensis) shows strong evidence for a monophyletic Aigialosauridae from which the hydropedal mosasauroid condition evolved at least twice. The results also support dolichosaurs as a non-monophyletic assemblage that form successive sister ii taxa to the derived ophidians. The relationship between mosasauroids (Aigialosauridae) and ophidiomorphs is less conclusive, recovering the ophidiomorph lineage as arising from within the Mosasauroidea, most often as a sister group to the Mosasaurinae. To provide context for their evolutionary history, non-ophidian ophidiomorphs are further investigated through paleobiogeography. Fragmentary discoveries suggest that dolichosaurs originated in the Valanginian (Early Cretaceous) or even the latest Jurassic. Diversity and density peaked in the Cenomanian as a result of a large radiation in the Tethys and Western Interior Seaway. This radiation was likely interrupted by the Cenomanian-Turonian Boundary Event, an extinction event which caused a considerable drop in diversity. Non-ophidian ophidiomorphs persist until the Maastrichtian, while achieving their largest geographical distribution: spanning Europe, North America and South America. Their fossil record indicated that this geographically widespread group inhabited nearshore and offshore marine environments, and made several independent radiations into freshwater environments. Their radiative success was driven by features that were predisposed to functionality in the marine environment. Such ‘preadaptive’ features could explain the propensity of the pythonomorph lineage to invade the water, as evidenced by multiple lineages independently radiating into the marine environment. Fast evolution of aquatically adapted features would subsequently allowed them to colonize the aquatic environment worldwide. iii PREFACE Some of the research conducted for this thesis forms part of an international research collaboration, led by Dr. Michael Caldwell at the University of Alberta, with the Croatian Natural History Museum (Hrvatski prirodoslovni muzej), Zagreb, Croatia. Chapters two and three represent two manuscripts written, figured, and analyzed by M. Campbell Mekarski. M. Caldwell was the supervisory author; K. Krizmanić supervised the curation and management of the specimens; and D. Japundžić assisted with the review and interpretation of Croatian literature, assisted with some anatomical interpretation, and prepared the specimen described in Chapter two. Chapters one and four through seven are my original work. Chapter two of this thesis is in preparation for submission as M. Campbell Mekarski, D. Japundžić, K. Krizmanić, and M. Caldwell “A new Cenomanian-Turonian Pontosaurus from the Dalmatian Coast, Croatia, and the first described ‘dolichosaur’ stomach contents” PLoS One. M. Caldwell assisted with manuscript composition and editing; D. Japundžić contributed to geological review and manuscript edits; and K. Krizmanić contributed to manuscript edits. Chapter three of this thesis is in preparation for submission as M. Campbell Mekarski, D. Japundžić, K. Krizmanić, and M. Caldwell “Description of a new basal mosasauroid with comments on the evolution of the mosasauroid forelimb” Journal of Vertebrate Paleontology. M. Caldwell assisted with manuscript composition, D. Japundžić and K. Krizmanić contributed to manuscript edits. Chapter seven was originally researched and written for a much more general audience as two parts of the University of Alberta MOOC ‘Ancient Marine Reptiles, PALEO 203’. Though all the original writing and the bulk of the background research is all my own, H. Street helped iv with literature review, and T. Onuczko, M. Caldwell, and H. Street contributed to edits. The included text is all my own original work, and has been greatly edited and supplemented for this thesis from its original format. The novel taxonomic binomials introduced in chapters two and three are not official under the International Code of Zoological Nomenclature and should not be considered valid at this time. v ACKNOWLEDGEMENTS First and foremost, I would like to thank Dr. Michael Caldwell for his supervision, guidance, and friendship during my stay at the University of Alberta. He was willing to take a student fresh from medical oncology research, who had very little prior knowledge of paleontology, and work with me to make my degree a success. I am extremely grateful for his faith and patience. The many discussions (in the lab, in hallways, and in kitchens and restaurants with wine in hand) greatly influenced my thinking as a person and a scientist, and I look forward to a lifetime of mentorship, friendship, and collaboration. I would also like to thank Rob Holmes, Alison Murray, and John Acorn, who were involved in the supervision of my Ph.D. and who were always ready to help me out. I also want to thank Hans Larsson, the external member of my Ph.D. jury, for reading and evaluating my thesis, and for his suggestions. I gratefully acknowledge the funding agencies which supported me financially throughout: Natural Sciences and Engineering Research Council, the University of Alberta Faculty of Science and Department of Biological Sciences, and the Government of Alberta. I would like to give a special thanks to my colleagues at the Croatian Natural History Museum, especially Dražen Japundžić, Katarina Krizmanić and Davorka Radovčić. Without them, access to the specimens which formed the backbone of this thesis would not have been possible. I wish to thank them for their generosity and hospitality during my visits, for inviting me into their homes, offices, cafes, and soccer fields, and introducing me to Croatian culture. Allan Lindoe deserves praise and thanks for his preparation of Portunatasaurus. Al is a constant source of comedic relief and stories, and has been a wonderful friend and mentor. The graduate students of the Biological Sciences department, and especially the members of the UofA Laboratory for Vertebrate Paleontology have been co-conspirators in both science vi and procrastination. In no particular order, thanks are offered to: Phil (we almost took over the world!), Michelle, Michele, Van, Josh2, Kyle, Fran, Trish, Jess, Katie, Kristina, Miriam, Robin, Jasmine, Stephanie, Kelly, Paulina, Thodoris, Juan, Gavin, Tiago, Julien, Betsy, Tetsuto, Victoria, Scott, Mike, Aaron, Angelica, Greg, Sydney, Matt, Brennan, Aaron, Sinjini, Oksana, Ilaria, and Katherine. An extra special thank you goes to Hallie Street, who picked me up from the airport and let me sleep in her living room during my first week in Edmonton, who guided me in my early struggles with anatomy and geology, answered countless questions, who has been a collaborator, travel companion, trusted second opinion, and my closest friend in Edmonton. For celebrating the good times, and distracting me during the bad: thank you to all my friends (especially Jess, Chris, Jessie, Logan, Amy, Caroline, Mike, and the Crossfit Lineage and Edmonton Water Polo communities), and most especially my family. My mother, father, and brother watched me leave to start this journey, and I have two mothers, fathers, and brothers cheering for me at its completion. To Mom, Dad, Iain, Pawel, Sean, Liv, Chris and Barb, Tom, Aunt Heather, Oma and Grandad, Grandma and Grandpa, cousins, aunts, and uncles. Even being so far away, you were all very present during every step of my Ph.D. studies. Thank you for all the love and support
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • The Skull of the Upper Cretaceous Snake Dinilysia Patagonica Smith-Woodward, 1901, and Its Phylogenetic Position Revisited
    Zoological Journal of the Linnean Society, 2012, 164, 194–238. With 24 figures The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited HUSSAM ZAHER1* and CARLOS AGUSTÍN SCANFERLA2 1Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, SP, Brasil 2Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Angel Gallardo 470 (1405), Buenos Aires, Argentina Received 23 April 2010; revised 5 April 2011; accepted for publication 18 April 2011 The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high-resolution X-ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard-like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenes- tralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister-taxon to all extant snakes.
    [Show full text]
  • Tylosaurine Mosasaurs (Squamata) from the Late Cretaceous of Northern Germany
    Netherlands Journal of Geosciences —– Geologie en Mijnbouw | 94 – 1 | 55-71 | 2015 doi: 10.1017/njg.2014.31 Tylosaurine mosasaurs (Squamata) from the Late Cretaceous of northern Germany J.J. Hornung1,2,* &M.Reich3,4 1 Georg-August University Gottingen,¨ Geoscience Centre, Department of Geobiology, Goldschmidt-Straße 3, 37077 Gottingen,¨ Germany 2 Current address: Fuhlsbuttler¨ Str. 611, 22337 Hamburg, Germany 3 SNSB - Bavarian State Collection for Palaeontology and Geology, Richard-Wagner-Str. 10, 80333 Munich, Germany 4 Department of Earth and Environmental Sciences, Ludwig-Maximilians University Munchen,¨ Richard-Wagner-Str. 10, 80333 Munich, Germany * Corresponding author. Email: [email protected] Manuscript received: 27 April 2014, accepted: 18 September 2014 Abstract Two genera of tylosaurine mosasaurs, Tylosaurus and Hainosaurus, are recorded for the first time from Germany. Tylosaurus sp. is represented by two isolated tooth crowns, originally described as Mosasaurus? alseni (here considered a nomen dubium) from the latest Santonian–Early Campanian, which are very similar to T. ivoensis and T. gaudryi.ThematerialofHainosaurus sp. comprises a maxillary with associated postorbitofrontal, two pterygoid teeth and several indeterminate cranial fragments. The specimen from the Late Campanian is slightly less derived than H. bernardi from the Maastrichtian in retaining labiolingually less compressed anterior maxillary teeth and unserrated pterygoid teeth with only very weak carinae. Despite only minor skeletal differences, the genus Hainosaurus is considered to be distinct from Tylosaurus because of its significant modification of the dental apparatus compared to the plesiomorphic condition in the latter. This dental morphology suggests a phylogenetic trend from a generalised-piercing marginal dentition in Tylosaurus towards the increasingly labiolingually compressed, symmetrical, strongly bicarinate cutting marginal teeth in Hainosaurus spp.
    [Show full text]
  • Estesia Mongoliensis (Squamata: Anguimorpha) and the Evolution of Venom Grooves in Lizards
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications AMERICAN MUSEUM NOVITATES Number 3767, 31 pp. January 25, 2013 New materials of Estesia mongoliensis (Squamata: Anguimorpha) and the evolution of venom grooves in lizards HONG-YU YI1,2 AND MARK A. NORELL1,2 ABSTRACT New specimens of the fossil lizard Estesia mongoliensis are described from the Upper Cre- taceous of Mongolia. Phylogenetic analysis of 86 anguimorph taxa coded with 435 morphologi- cal characters and four genes confirms the placement of Estesia mongoliensis in a monophyletic Monstersauria. Extant monstersaurs, the genus Heloderma, are the only extant lizards bearing venom-transmitting teeth with a deep venom grove in the rostral carina. Compared to the crown group, stem monstersaurs are morphologically more variable in venom-delivery appa- ratus. This study has found that Estesia mongoliensis has two shallow grooves in the rostral and caudal carinae of its dentary teeth, demonstrating a primary venom-delivery apparatus. A sum- mary of venom-delivering tooth specialization in the Anguimorpha is provided, and related morphological characters are optimized on the strict consensus tree resulting from the com- bined morphological and molecular analysis of anguimorph phylogeny. The phylogeny supports a single origination of venom grooves in the Monstersauria, and indicates that grooved teeth are currently the only reliable venom-delivery apparatus to be recognized in fossil lizards. Key Words: Estesia mongoliensis, Monstersauria, venom groove, Anguimorpha INTRODUCTION Estesia mongoliensis is the oldest fossil squamate with dental grooves comparable to venom grooves in extant species.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • ONTOGENIA DE Iguana Iguana (Linnaeus, 1758): ESTÁGIOS EMBRIONÁRIOS E DESENVOLVIMENTO DO ESQUELETO
    UNIVERSIDADE DE BRASÍLIA Instituto de Ciências Biológicas Programa de Pós-Graduação em Biologia Animal ONTOGENIA DE Iguana iguana (Linnaeus, 1758): ESTÁGIOS EMBRIONÁRIOS E DESENVOLVIMENTO DO ESQUELETO DOUTORANDO: FABIANO CAMPOS LIMA ORIENTADOR: DR. ANTONIO SEBBEN BRASÍLIA – DF JUNHO, 2015 ONTOGENIA DE Iguana iguana (Linnaeus, 1758): ESTÁGIOS EMBRIONÁRIOS E DESENVOLVIMENTO DO ESQUELETO FABIANO CAMPOS LIMA Tese apresentada ao Programa de Pós- Graduação em Biologia Animal do Instituto de Ciências Biológicas da Universidade de Brasília com requisito parcial para obtenção do título de Doutor em Biologia Animal. ORIENTADOR: DR. ANTONIO SEBBEN BRASÍLIA – DF JUNHO, 2015 UNIVERSIDADE DE BRASÍLIA Instituto de Ciências Biológicas Programa de Pós-Graduação em Biologia Animal FABIANO CAMPOS LIMA Título da Tese Ontogenia de Iguana iguana (Linnaeus, 1758): Estágios Embrionários e Desenvolvimento do Esqueleto Prof. Dr. Antonio Sebben Presidente/Orientador UnB Prof. Dr. Eduardo Maurício Mendes de Lima Profa. Dra. Lilian Gimenes Giugliano Membro Efetivo Externo Membro Efetivo Externo UnB UnB Profa. Dra. Aline Pic-Taylor Prof. Dr. Osmindo Rodrigues Pires Junior Membro Efetivo Interno Membro Efetivo Interno UnB UnB Profa. Dra. Jussara Rocha Ferreira Membro Suplente UnB Brasília, 23 de Junho de 2015 Existe um único caminho que nos leva a plenitude e a herança que o mundo nos permite: o conhecimento. AGRADECIMENTOS Nenhuma grande jornada pode ser concluída sem que muitos personagens tenham participado dela. Poder expressar gratidão por aqueles que tornaram sua trajetória mais exequível é motivo de satisfação, pois nem todos são gratos àqueles que o ajudaram a transpor as pedras em seu caminho. Sou imensamente grato ao meu orientador, o professor Antonio Sebben, que desde o primeiro dia depositou confiança em mim, um rapaz franzino que apareceu do nada com o objetivo de se tornar um doutor.
    [Show full text]
  • Angola: Museum in the Ground
    ANGOLA: MUSEUM IN THE GROUND Good Fossils Ocean Currents and Source Rocks Dinosaur Extinction (K-Pg Boundary) Angolasaurus (90 million year old marine lizard, also found in Texas) Louis L. Jacobs Roy M. Huffington Department of Earth Sciences Southern Methodist University, Dallas, Texas InIn 20052005 wewe wentwent toto AngolaAngola becausebecause fossilsfossils ofof giantgiant marinemarine lizardslizards (mosasaurs)(mosasaurs) hadhad beenbeen reportedreported inin thethe 1960’s.1960’s. CouldCould wewe findfind more?more? ColleaguesColleagues atat UniversidadeUniversidade Agostinho Agostinho Neto Neto were were contactedcontacted andand wewe brieflybriefly visitedvisited thethe field.field. BasedBased onon ourour preliminarypreliminary trip,trip, thethe NationalNational GeographicGeographic SocietySociety andand thethe PetroleumPetroleum ResearchResearch FundFund ofof thethe AmericanAmerican ChemicalChemical SocietySociety fundedfunded expeditionsexpeditions inin 20062006 andand 2007.2007. In cooperation with Universidade Agostinho Neto and ISPRA (Lubango). We have shown that: 1. The fossils of Angola are a “Museum in the Ground.” 2. The geologic context of the fossils gives clues to past ocean currents and productivity leading to petroleum source rocks. 3. The rocks of Angola record events of worldwide interest, such as the extinction of mosasaurs and dinosaurs, and the precise position of ancient shores. IEMBE (north of Luanda) 90 million years old Drawing of original specimen, 1964 Home of Discovery site of Angolasaurus in 1962 Angolasaurus Discovery site in 2006 The best specimen, 2006 Ammonite in Iembe cliff Angolasaurus before excavation Excavation of front flipper of Angolasaurus (note ammonite lying next to fingers) Shark Vertebrae, Iembe, 90 Million Years The first dinosaur, a sauropod, found in Angola, at Iembe. Excavation pit for front leg of sauropod dinosaur Professor Jacobs (SMU) excavating arm bone of Angolan dinosaur Unexcavated Turtle Skull BENTIABA 68 Ma, 15ºS Each red point is a good fossil.
    [Show full text]
  • Tylosaurus and Pteranodon
    Tylosaurus and Pteranodon Estimate size and measure to check estimate. OBJECTIVES Students will: 1. identify the Tylosaurus and Pteranodon as the two state fossils of Kansas, and 2. estimate and check the wingspan of the Pteranodon or the length of the Tylosaurus. MATERIALS FROM THE TRUNK Tylosaurus model Pteranodon model Fossil sample OTHER MATERIALS Ruler or tape measure Masking tape, post-its or something similar to mark measurements on floor TEACHER PREPARATION Decide which of the two fossils you will measure: Pteranodon had a 25-foot wingspan or the Tylosaurus was 49 feet long. Identify a location with 50 linear feet of space that can be used to measure the wingspan of the Pteranodon or the length of the Tylosaurus. Consider using a hallway, playground, or gym. Once a location is identified, use a tape measure to mark the beginning and end of a 25-foot linear space and a 49-foot linear space. This is where the students will measure the two state fossils. HISTORICAL BACKGROUND In 2014 the Kansas Legislature passed a bill making the Tylosaurus and the Pteranodon the state fossils of Kansas. Both of these reptiles lived at the time of dinosaurs, but neither are dinosaurs. Mike Everhart, adjunct curator of paleontology at the Sternberg Museum, geologist Alan Deitrich, and Steven Fisher, a 4-H geology project member, testified in support of the bill. Fossil hunters and natural history museums initiated the adoption of these state fossils. Kansas 4-H geology project members supported the bill. Pteranodon (teh-RAN-oh-don) – “Pteranodon, a great, winged pterosaur with a wingspread of more than 24 feet, which flew the skies of Kansas during the cretaceous period of the mesozoic era, is hereby designated as the official flying fossil of the state Kansas Symbols Traveling Resource Trunk KANSAS HISTORICAL SOCIETY www.kshs.org ©2014 61 of Kansas.” (House Bill 2595) The first Pteranodon specimens discovered in North America were found in western Kansas in 1870 by Othniel Charles Marsh.
    [Show full text]
  • (Squamata: Mosasauridae) from the Late Cretaceous Of
    C. R. Palevol 14 (2015) 483–493 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear Un halisauriné (Squamata : Mosasauridae) du Crétacé supérieur de Patagonie, à disque tympanique conservé : un aperc¸ u de l’oreille moyenne des mosasaures a,∗ b Marta S. Fernández , Marianella Talevi a CONICET - División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina b CONICET - Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Isidro Lobo y Belgrano, 8332 General Roca, Río Negro, Argentina a b s t r a c t a r t i c l e i n f o Article history: Halisaurinae is a subfamily of enigmatic, small- to medium-sized mosasauroids, which Received 15 September 2014 retain a mosaic of primitive and derived features. The first record of a South American Hal- Accepted after revision 13 May 2015 isaurus with precise stratigraphic information includes a quadrate carrying a tympanic disc together with twelve vertebrae, collected in the Late Maastrichtian of Jagüel Formation Handled by Nathalie Bardet in northern Patagonia (Argentina). The preservation of a tympanic disc allows exploring and discussing the mechanisms of sound transmission in these mosasauroids. The loca- Keywords: tion of the tympanic disc resembles that one formed by the extracolumella of aquatic Halisaurus turtles and at least one extant lizard. Based on morphological comparison of the middle Patagonia ear we discuss previous hypotheses on the modification of the tympanic middle ear system Late Maastrichtian of mosasauroids for underwater hearing, in a manner similar to that observed in aquatic Cretaceous turtles.
    [Show full text]
  • THE ORIGIN and EVOLUTION of SNAKE EYES Dissertation
    CONQUERING THE COLD SHUDDER: THE ORIGIN AND EVOLUTION OF SNAKE EYES Dissertation Presented in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher L. Caprette, B.S., M.S. **** The Ohio State University 2005 Dissertation Committee: Thomas E. Hetherington, Advisor Approved by Jerry F. Downhower David L. Stetson Advisor The graduate program in Evolution, John W. Wenzel Ecology, and Organismal Biology ABSTRACT I investigated the ecological origin and diversity of snakes by examining one complex structure, the eye. First, using light and transmission electron microscopy, I contrasted the anatomy of the eyes of diurnal northern pine snakes and nocturnal brown treesnakes. While brown treesnakes have eyes of similar size for their snout-vent length as northern pine snakes, their lenses are an average of 27% larger (Mann-Whitney U test, p = 0.042). Based upon the differences in the size and position of the lens relative to the retina in these two species, I estimate that the image projected will be smaller and brighter for brown treesnakes. Northern pine snakes have a simplex, all-cone retina, in keeping with a primarily diurnal animal, while brown treesnake retinas have mostly rods with a few, scattered cones. I found microdroplets in the cone ellipsoids of northern pine snakes. In pine snakes, these droplets act as light guides. I also found microdroplets in brown treesnake rods, although these were less densely distributed and their function is unknown. Based upon the density of photoreceptors and neural layers in their retinas, and the predicted image size, brown treesnakes probably have the same visual acuity under nocturnal conditions that northern pine snakes experience under diurnal conditions.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]