Cobalt- and Nickel-Containing Enzyme Constructs from the Sequences of Methanogens

Total Page:16

File Type:pdf, Size:1020Kb

Cobalt- and Nickel-Containing Enzyme Constructs from the Sequences of Methanogens ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 1. P. 68–74 BIOINFORMATICS UDC 577.151.7 Cobalt- and Nickel-containing enzyme constructs from the sequences of methanogens P. Chellapandi, J. Balachandramohan Department of Bioinformatics, School of Life Sciences, Bharathidasan University Tiruchirappalli-620024, Tamil Nadu, India [email protected] Aim. The conserved domain of sequences revealed in methanogens is considered for designing enzymes among which the attention has been focused on the metalloenzymes showing evolutionary significances. Methods. Mo- lecular evolution, molecular modelling and molecular docking methods. Results. Molecular evolutionary hypo- thesis has been applied for designing cobalt-containing sirohydrocholine cobalt chelatase and nickel-contai- ning coenzyme F 420 non-reducing hydrogenase from conserved domains encompassing metal- and substrate-bin- ding sites. It was hypothesized that if any enzyme has similar or identical conserved domain in its catalytic re- gion, the construct can bring similar catalytic activity. Using this approach, the region which covers such func- tional module has to be modeled for yielding enzyme constructs. The present approach has provided a high li- kelihood to design stable metalloenzyme constructs from the sequences of methanogens due to their low functio- nal divergence. The resulted enzyme constructs have shown diverse reaction specificity and binding affinity with respective substrates. Conclusions. It seems to provide a new knowledge on understanding the catalytic compe- tence as well as substrate-specificity of enzyme constructs. The resulted enzyme constructs could be experimen- tally reliable as the sequences originally driven from methanogenic archaea. Keywords: molecular docking, metalloenzymes, conserved domains, molecular evolution, enzyme design, enzy- me constructs. Introduction. Enzymatic or microbial transformations ning chemical catalysts. The first step towards desig- are environmental friendly, clean process and useful ning a working catalyst is, therefore, knowledge on the means for obtaining biologically important compo- structure of the enzyme and its active site [2, 3]. Evolu- unds. Enzymes from nature rarely have the combined tionary conservation in sequence and structure would properties necessary for the industrial fine chemical make contribution in enzyme catalysis. Such conserved production that will be present over the course of a ma- amino acid residues are major concern in designing me- nufacturing process. Enzymes from extremophilic or- talloenzymes. ganisms may provide useful biocatalysts and may be Upon designing enzyme constructs, the molecular evo- even more valuable for biotransformation reactions. A lution of enzymes is playing a crucial role in biological range of methanogenic archaeon enzymes application systems when enzymes are in action [4, 5]. Thus, the pre- and usage of the organisms themselves in biotechnolo- sent study describes the application of a molecular evolu- gy are more restricted. At present, many studies explo- tionary hypothesis to design metalloenzymes constructs re the identification of novel enzymes from methano- from conserved domains in the sequences of methano- gens for the industrial application [1, 2]. gens encompassing metal- and substrate-binding sites. Metals are tightly bound in the active sites of me- Materials and methods. Evolutionary conserva- talloenzymes to bring the chemical activity. The metal- tion analysis of metalloenzymes. Complete protein se- loenzymes are potentially very good models for desig- quences of archaeal cobalt and nickel-containing en- Ó Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012 zymes were retrieved from GenPept of NCBI. Conser- 68 COBALT- AND NICKEL-CONTAINING ENZYME CONSTRUCTS FROM THE SEQUENCES OF METHANOGENS ved domains architecture of these sequences was sear- Molecular docking of enzyme construct-substrate ched in NCBI-Conserved Domain Database (CDD). complex. Substrate structures were retrieved from KEGG The metal binding sites of the sequences were iden- database with SIMCOM tool (http://www.genome.jp/ tified from availed PDB structures using the corres- tools/simcomp) and then molecular formats prepared ponding PSSM ID in NCBI-CDD. A position-specific as PDB format for molecular docking studies. Homolo- score matrix prepared from the underlying conserved gy models resulted from Prime program was prepared domain alignment was compared with the query sequ- with charges for molecular docking studies. Both sub- ences. Multiple sequence alignment of the selected se- strate and protein were treated with AMBER force field quences was performed by ClustalX 2.0 software [6], implemented in AutoDock 4.0. software. Ligand Fit do- in which aligned sequences were manually inspected to cking was conducted by AutoDock software with Ge- delete the low scoring sequences. After that, the neigh- netic Algorithm and computed inhibition constant, bin- bor joining phylogenetic tree was constructed by ME- ding energy and other molecular forces of resulted do- GA 4.0 software [7] with 1000 bootstraps values. cking models. Active site residues in enzyme const- Molecular modelling and enzyme designing. Homo- ruct as in energy grid were allowed to interact with sub- logy modelling was carried out by ModWeb, an auto- strate. After docking, enzyme-substrate complex was matic comparative protein modelling server, from que- solvated with explicit periodic boundary solvation mo- ry sequences obtained from methanogens [8]. A suitab- del. The quality of each docking model was checked by le PDB template for homology modelling was identifi- AutoDock scoring system and graphically represented ed with PSI-BLAST tool [9] by searching against PDB by PyMOL software. database. ProFunc server [10] was used to predict the Results and discussion. Designing sirohydrocholi corresponding function sites of models. The catalytic ne cobalt chelatase. Cobaltochelatase, methionine syn- domains of every protein model were compared with the thase, methionine aminopeptidase, methylmalonyl-CoA crystallographic protein structures. Amino acid residu- mutase and methyl aspartate mutase are cobalt-dependent es encompassing the sites for metal-binding and subst- enzymes identified in the genomes of archaea. Among rate-binding regions were removed from atomic coordi- these, sirohydrocholine cobaltochelatase (SHCCC) and nates of a protein model and subjected to further homo- anaerobic chelatase (ACC) are present in methanogens. logy modelling. Prime program in Maestro software The limited structural information is available for co- package (Schrodinger Inc.) was used to build the homo- balt chelatase in the PDB to date. The sequence identity logy models from the above selected regions and then of SHCCC is ranged from 30–46 % with PDB templa- evaluated with Structural Analysis and Verification Ser- tes. Enzyme sequences under accession numbers YP_ ver (SAVS) (http://nihserver.mbi.ucla.edu/SAVES/). 001098022 (construct 1) from Methanococcus maripa- The best scoring models were superimposed on the cor- ludies C5 and YP_001030522 (construct 2) from Me- responding PDB template by DALITE server (http:// thanocorpusculum labreanum Z have significant model- ekhidna.biocenter.helsinki.fi/dali_lite/start). Standard ling scores, and encompassed the shortest metal bin- dynamics simulation cascade module in Discovery Stu- ding sites incorporating functional region (Supplemen- dio software with CHARMM force field, steepest des- tary). Aligned SHCCC sequences have also more con- cent and adopted basis Newton-Raphson algorithms servation at the substrate- and metal-binding regions was used for generating structural conformers of each (Fig. 1). Construct 1 is evolutionarily related only to model. Conformers were typically created for mole- closely related species of the same genera and its func- cules that have a small number of alternate locations for tion may conserve in the particular sequence position a small subset of the atoms. Distance constraint of each and/or domain. SHCCC in M. labreanum Z shows mo- model was fixed between N-terminal to C-terminal, re evolutionary relationship with SHCCC of M. mari- and dihedral restraint was started from C to Ca (Ф) of paludies C5 (bootstrap value 987–1000) than with first amino acid residue and Ca to N (y) of second ami- other archaea. The different species of Methanosarcina no acid residue until the last amino acid residue in a mo- genus are clustered with the members in the genus of lecular dynamic ensemble. Methanococcus in the first clade, and then both of them 69 CHELLAPANDI P., BALACHANDRAMOHAN J. Fig. 1. Functional features of SHCCC enzyme constructs computed by multiple sequ- ence alignment (Shaded re- gions show highly variable amino acids and bolded regi- ons represent functional ami- no acids) 984 Sulfolobussolfataricus SulfolobusacidocaldariusDSM639 O7-Ser16 (2.96 C), O11-Arg12 (3.19 C), O5-Arg12 186 1000 HalobacteriumsalinarumR1 (2.78 C), and O5-Arg12 (3.38 C). Among these, Arg12 1000 HaloarculamarismortuiATCC43049 forms three H-bonds to confer higher binding affinity. Bacillusmegaterium 378 HaloarculamarismortuiATCC43049 Six H-bonds are formed between sirohydrochlorin and 109 1000 Methanosarcinaacetivorans construct 2 at atomic positions of H3-Ser13 (2.52 C), 1000 MethanosarcinaacetivoransC2A O6-Ser13 (3.08 C), O1-Arg14 (3.00 C), O5-Arg14 Methanosarcinabarkeristr.Fusaro 999 377 Methanosarcinamazei (2.98 C), O12-Lys19 (2.85 C), and O16-Lys19 (2.76 C)
Recommended publications
  • Quantum Effects in Radical B12 Enzymes
    Quantum Effects in Adenosylcobalamin-dependent Enzymes by M. Hossein Khalilian Boroujeni B.Sc., Chemistry, Razi University, 2014 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE COLLEGE OF GRADUATE STUDIES (Chemistry) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) April 2019 © M. Hossein Khalilian Boroujeni, 2019 The following individuals certify that they have read, and recommend to the College of Graduate Studies for acceptance, a thesis/dissertation entitled: Quantum Effects in Adenosylcobalamin-dependent Enzymes submitted by M. Hossein Khalilian Boroujeni in partial fulfillment of the requirements for the degree of Master of Science Examining Committee: Gino A. DiLabio, I. K. Barber School of Arts & Sciences Supervisor W. Stephen McNeil, I. K. Barber School of Arts & Sciences Supervisory Committee Member Kirsten Wolthers, I. K. Barber School of Arts & Sciences Supervisory Committee Member Michael Deyholos, I. K. Barber School of Arts & Sciences University Examiner ii Abstract The ability of radical enzymes to maintain tight control over the high reactive radical intermediates generated in their active sites is not completely understood. In this thesis, we report on a strategy that radical (B12-dependent) enzymes appear to exploit in order to manipulate and control the reactivity of one of their radical intermediate (5'-deoxyadenosyl radical) contained in the active site. The results of quantum mechanical calculations suggest that these enzymes utilize the little known quantum Coulombic effect (QCE), which causes the radical to acquire an electronic structure that contradicts the Aufbau Principle. This effect causes the energy of the singly-occupied molecular orbital (SOMO) of the radical to be well below that of the highest-occupied molecular orbital (HOMO), which renders the radical less reactive.
    [Show full text]
  • The Gun4 Gene Is Essential for Cyanobacterial Porphyrin Metabolism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS 28618 FEBS Letters 571 (2004) 119–123 The gun4 gene is essential for cyanobacterial porphyrin metabolism Annegret Wildea,*, Sandra Mikolajczyka, Ali Alawadyb, Heiko Loksteinb, Bernhard Grimmb aInstitut fu€r Biologie, Biochemie der Pflanzen, Humboldt-Universita€t zu Berlin, Chausseestr. 117, 10115 Berlin, Germany bInstitut fu€r Biologie, Pflanzenphysiologie, Humboldt-Universita€t zu Berlin, Philippstr. 13, 10115 Berlin, Germany Received 5 April 2004; revised 16 June 2004; accepted 17 June 2004 Available online 6 July 2004 Edited by Richard Cogdell norflurazon treatment and are characterized by deregulated Abstract Ycf53 is a hypothetical chloroplast open reading Gun4 frame with similarity to the Arabidopsis nuclear gene GUN4.In communication between plastids and nucleus [2]. carries plants, GUN4 is involved in tetrapyrrole biosynthesis. We a nuclear mutant gene, which encodes a putative regulatory demonstrate that one of the two Synechocystis sp. PCC 6803 protein that interacts with Mg chelatase and stimulates its ycf53 genes with similarity to GUN4 functions in chlorophyll activity [3]. Mg chelatase is a highly regulated tetrapyrrole (Chl) biosynthesis as well: cyanobacterial gun4 mutant cells biosynthesis enzyme which catalyzes insertion of Mg2þ into exhibit lower Chl contents, accumulate protoporphyrin IX and protoporphyrin IX (Proto) and thus, directs Proto into the show less activity not only of Mg chelatase but also of Fe chlorophyll (Chl) synthesizing pathway [4]. Mg chelatase is a chelatase. The possible role of Gun4 for the Mg as well as Fe protein complex consisting of three subunits, CHL I, CHL H porphyrin biosynthesis branches in Synechocystis sp.
    [Show full text]
  • Itraq-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves
    Article iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves Fang Dong 1,2, Yuanzhi Shi 1,2, Meiya Liu 1,2, Kai Fan 1,2, Qunfeng Zhang 1,2,* and Jianyun Ruan 1,2 1 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; [email protected] (F.D.); [email protected] (Y.S.); [email protected] (M.L.); [email protected] (K.F.); [email protected] (J.R.) 2 Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310008, China * Correspondence: [email protected]; Tel.: +86-571-8527-0665 Received: 7 November 2018; Accepted: 5 December 2018; Published: 7 December 2018 Abstract: To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism.
    [Show full text]
  • Post-Translational Coordination of Chlorophyll Biosynthesis And
    ARTICLE https://doi.org/10.1038/s41467-020-14992-9 OPEN Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development ✉ ✉ Peng Wang 1 , Andreas S. Richter 1,3, Julius R.W. Kleeberg 2, Stefan Geimer2 & Bernhard Grimm1 Chlorophyll is indispensable for life on Earth. Dynamic control of chlorophyll level, determined by the relative rates of chlorophyll anabolism and catabolism, ensures optimal photosynthesis 1234567890():,; and plant fitness. How plants post-translationally coordinate these two antagonistic pathways during their lifespan remains enigmatic. Here, we show that two Arabidopsis paralogs of BALANCE of CHLOROPHYLL METABOLISM (BCM) act as functionally conserved scaffold proteins to regulate the trade-off between chlorophyll synthesis and breakdown. During early leaf development, BCM1 interacts with GENOMES UNCOUPLED 4 to stimulate Mg-chelatase activity, thus optimizing chlorophyll synthesis. Meanwhile, BCM1’s interaction with Mg- dechelatase promotes degradation of the latter, thereby preventing chlorophyll degradation. At the onset of leaf senescence, BCM2 is up-regulated relative to BCM1, and plays a con- served role in attenuating chlorophyll degradation. These results support a model in which post-translational regulators promote chlorophyll homeostasis by adjusting the balance between chlorophyll biosynthesis and breakdown during leaf development. 1 Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin,
    [Show full text]
  • Anaerobic Radical Enzymes for Biotechnology
    ChemBioEng Reviews Anaerobic radical enzymes for biotechnology Journal: ChemBioEng Reviews Manuscript ID cben.201800003.R1 Wiley - Manuscript type:For Review Peer Review Date Submitted by the Author: n/a Complete List of Authors: Jäger, Christof; University of Nottingham, Chemical and Environmental Engineering Croft, Anna; University of Nottingham, Chemical and Environmental Engineering Keywords: Radicals, Enzymes, Catalysis, Biotechnology, Anaerobic reactions Wiley-VCH Page 1 of 61 ChemBioEng Reviews 1 2 3 Christof M. Jäger* and Anna K. Croft* 4 5 6 7 8 9 Anaerobic radical enzymes for biotechnology 10 11 12 13 AUTHORS: Dr Christof Martin Jäger* and Dr Anna Kristina Croft* 14 15 16 ADDRESS: Department of Chemical and Environmental Engineering, University of 17 18 Nottingham, Nottingham, NG7 2RD, United Kingdom. [email protected], 19 For Peer Review 20 21 [email protected] 22 23 24 ABSTRACT: 25 26 27 28 Enzymes that proceed through radical intermediates have a rich chemistry that includes 29 30 functionalisation of otherwise unreactive carbon atoms, carbon-skeleton rearrangements, 31 32 aromatic reductions, and unusual eliminations. Especially under anaerobic conditions, 33 34 organisms have developed a wide range of approaches for managing these transformations 35 36 that can be exploited to generate new biological routes towards both bulk and specialty 37 38 39 chemicals. These routes are often either much more direct or allow access to molecules that 40 41 are inaccessible through standard (bio)chemical approaches. This review gives an overview 42 43 of some of the key enzymes in this area: benzoyl-CoA reductases (that effect the enzymatic 44 45 Birch reduction), ketyl radical dehydratases, coenzyme B12-dependant enzymes, glycyl 46 47 radical enzymes, and radical SAM (AdoMet radical) enzymes.
    [Show full text]
  • <I>Lactobacillus Reuteri</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 2014 From prediction to function using evolutionary genomics: Human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions Jennifer K. Spinler Texas Children’s Hospital, [email protected] Amrita Sontakke Baylor College of Medicine Emily B. Hollister Baylor College of Medicine Susan F. Venable Baylor College of Medicine Phaik Lyn Oh University of Nebraska, Lincoln See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Spinler, Jennifer K.; Sontakke, Amrita; Hollister, Emily B.; Venable, Susan F.; Oh, Phaik Lyn; Balderas, Miriam A.; Saulnier, Delphine M.A.; Mistretta, Toni-Ann; Devaraj, Sridevi; Walter, Jens; Versalovic, James; and Highlander, Sarah K., "From prediction to function using evolutionary genomics: Human-specific ce otypes of Lactobacillus reuteri have diverse probiotic functions" (2014). Faculty Publications in Food Science and Technology. 132. http://digitalcommons.unl.edu/foodsciefacpub/132 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jennifer K. Spinler, Amrita Sontakke, Emily B. Hollister,
    [Show full text]
  • The Requirement for Cobalt in Vitamin B12: a Paradigm for ☆ Protein Metalation
    BBA - Molecular Cell Research 1868 (2021) 118896 Contents lists available at ScienceDirect BBA - Molecular Cell Research journal homepage: www.elsevier.com/locate/bbamcr Review The requirement for cobalt in vitamin B12: A paradigm for ☆ protein metalation Deenah Osman a,b, Anastasia Cooke c, Tessa R. Young a,b, Evelyne Deery c, Nigel J. Robinson a,b,*, Martin J. Warren c,d,e,** a Department of Biosciences, Durham University, Durham DH1 3LE, UK b Department of Chemistry, Durham University, Durham DH1 3LE, UK c School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK d Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK e Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK ARTICLE INFO ABSTRACT Keywords: Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the Cobalamin most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor Cobamide and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including Metals mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosyn­ Chelation thesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial Homeostasis sensors communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels.
    [Show full text]
  • Itraq-Based Proteome Profiling Revealed the Role of Phytochrome A
    www.nature.com/scientificreports OPEN iTRAQ‑based proteome profling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling Sherinmol Thomas1, Rakesh Kumar2,3, Kapil Sharma2, Abhilash Barpanda1, Yellamaraju Sreelakshmi2, Rameshwar Sharma2 & Sanjeeva Srivastava1* In plants, during growth and development, photoreceptors monitor fuctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR‑light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de‑etiolate in continuous FR. Here we used iTRAQ‑based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR‑mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identifed a decreased abundance of enzymes involved in photosynthesis and carbon fxation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profle associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant. Plant development is intimately bound to the external light environment. Light drives photosynthetic carbon fxa- tion and activates a set of signal-transducing photoreceptors that regulate plant growth and development.
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • Kinetics of Metal Chelatase from Rat Liver Mitochondria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 13, number 2 FEBS LETTERS February 1971 KINETICS OF METAL CHELATASE FROM RAT LIVER MITOCHONDRIA H. BUGANY, L. FLOHE and U. WESER* Physiologisch-Chemisches Institut der Universitit Tiibingen, Germany Received 11 December 1970 1. Introduction and protoporphyrin IX served as the cosubstrate. This permitted assay of the metal chelatase activity The name metal chelatase has been deliberately much more precisely since anaerobic precautions chosen for the enzyme ferrochelatase (protohaem could be omitted. The maximum deviation of this ferro-lyase, EC 4.99.1 .l.). This enzyme preferentially assay did not exceed 7%. The experimental data pre- catalyses the insertion of Fe’+ ions into porphyrins sented in this report strongly suggest a random bin- to form haems. However, Co*+ and Zn*+ are almost ding of either substrate - i.e. Co*+ or protoporphyrin as active as Fe*+. Many divalent cations including IX - to the metal chelatase. The respective K, values Mg”, Ca*+, Ni*‘, Cd*‘, Pb*+ and Hg*+ inhibits this proved to be independent of the concentration of enzyme process [l-4] . The rate of non-enzymic the cosubstrate. The numerical K, values were 8 MM incorporation of metal ions under the same experi- for Co*+ and 3.6 PM for protoporphyrin IX. mental conditions is practically zero. Metal chelatase has a wide distribution in a great number of aerobic cells. Its purification, however, is 2. Materials and methods difficult and this was attributable to its chemical nature. Metal chelatase appears to be a structure- Female albino rats (Sprague-Dawley) weighing bound lipoprotein although a second water soluble 150 ? 30 g were kept under normal laboratory con- enzyme has been detected in Rhodopseudomonas ditions and were used without further treatment.
    [Show full text]
  • Comparative Genomics Analysis of Translational Frameshifting in Aerobic Cobalt Chelatase Genes
    Comparative genomics analysis of translational frameshifting in aerobic cobalt chelatase genes Ivan Antonov Institute of Bioengineering, Research Centre of Biotechnology, RAS, Moscow, Russia, [email protected] Maria Zamkova Russian N.N.Blokhin Cancer Research Center, Moscow, Russia, [email protected] Cobalt chelatase CobNST is one of about 25 enzymes required for aerobic biosynthesis of cobalamin (vitamin B12) in prokaryotes. It has been shown that the large, medium and small subunits of this enzyme are encoded by the cobN, cobT and cobS genes, respectively [1]. A later computational study has revealed a number of prokaryotic genomes where the cobT and cobS genes are missing from the cobalamin biosynthesis pathway. Instead these genomes contain the chlD and chlI genes encoding the medium and small subunits of the magnesium chelatase chlIDH - the enzyme required for chlorophyll biosynthesis. Given the high similarity between the magnesium and cobalt chelatases, the authors have hypothesized that the products of the chlD and chlI genes can replace the missing subunits of the cobNST enzyme. Recently, we have discovered a functional programmed ribosomal frameshifting (PRF) signal located inside the cobT gene from diverse bacteria and archea that efficiently diverts translation to the -1 reading frame [3]. The goal of the present study is to determine the possible biological function of this conserved recoding event. For this purpose we performed a comparative genomics analysis of the PRF-utilization by the cobalt and magnesium chelatase genes from more than 1200 prokaryotic genomes. In total, there were 135 and 36 cobT genes with putative -1 and +1 frameshifting, respectively. Given the high similarity between the CobS protein and the N-terminal part of the CobT protein, we hypothesized that translational frameshifting may allow cobT mRNA to produce two cobaltochelatase subunits.
    [Show full text]
  • Two Distinct Roles for Two Functional Cobaltochelatases (Cbik) in Desulfovibrio Vulgaris Hildenborough† Susana A
    Biochemistry 2008, 47, 5851–5857 5851 Two Distinct Roles for Two Functional Cobaltochelatases (CbiK) in DesulfoVibrio Vulgaris Hildenborough† Susana A. L. Lobo,‡ Amanda A. Brindley,§ Ce´lia V. Roma˜o,‡ Helen K. Leech,§ Martin J. Warren,§ and Lı´gia M. Saraiva*,‡ Instituto de Tecnologia Quı´mica e Biolo´gica, UniVersidade NoVa de Lisboa, AVenida da Republica (EAN), 2780-157 Oeiras, Portugal, and Protein Science Group, Department of Biosciences, UniVersity of Kent, Canterbury, Kent CT2 7NJ, United Kingdom ReceiVed February 28, 2008; ReVised Manuscript ReceiVed March 28, 2008 ABSTRACT: The sulfate-reducing bacterium DesulfoVibrio Vulgaris Hildenborough possesses a large number of porphyrin-containing proteins whose biosynthesis is poorly characterized. In this work, we have studied two putative CbiK cobaltochelatases present in the genome of D. Vulgaris. The assays revealed that both enzymes insert cobalt and iron into sirohydrochlorin, with specific activities with iron lower than that measured with cobalt. Nevertheless, the two D. Vulgaris chelatases complement an E. coli cysG mutant strain showing that, in ViVo, they are able to load iron into sirohydrochlorin. The results showed that the functional cobaltochelatases have distinct roles with one, CbiKC, likely to be the enzyme associated with cytoplasmic cobalamin biosynthesis, while the other, CbiKP, is periplasmic located and possibly associated with an iron transport system. Finally, the ability of D. Vulgaris to produce vitamin B12 was also demonstrated in this work. Modified tetrapyrroles such as hemes, siroheme, and constituted by only around 110-145 amino acids, the short S cobalamin (vitamin B12) are characterized by a large mo- form (CbiX ). The N-terminal and C-terminal domains of lecular ring structure with a centrally chelated metal ion.
    [Show full text]