Effects of Fertilizer Type and Rate on the Quality and Nutrient Content Of

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Fertilizer Type and Rate on the Quality and Nutrient Content Of month duration of their study. Gilman Effects of Fertilizer Type and Rate on the et al. (2000) also did not observe Quality and Nutrient Content of Four Species of differences among treatments in the growth of southern magnolia (Magnolia Trees Growing in Sandy South Florida Soils grandiflora) during the first year after planting, but treatment differences were 1 significant after 3 and 4 years. On the Timothy K. Broschat other hand, fertilized live oak (Quercus virginiana) were larger than unfertilized ADDITIONAL INDEX WORDS. Quercus virginiana, Swietenia mahagoni, Bucida trees during their first year (Gilman buceras, Calophyllum brasiliense, live oak, west indian mahogany, black olive, et al., 2000). beautyleaf, principal component analysis Most fertilizer studies on trees have concentrated on N require- SUMMARY. Broadleaf ornamental trees are known to vary widely in their responses to ments, yet in Florida landscapes N fertilization, depending on the species and soil and other environmental factors. Thus, it is important to study the responses of a wide range of tree species to deficiency symptoms are seldom ob- fertilization, especially on nutrient-poor soils. Four species of temperate to tropical served. Magnesium deficiency is fairly trees, live oak (Quercus virginiana), west indian mahogany (Swietenia mahagoni), common on Florida trees (Dickey, black olive (Bucida buceras ‘Shady Lady’), and beautyleaf (Calophyllum brasiliense), 1977), but it is not known if routine planted into a sandy native soil in south Florida were fertilized with a 24N–0P–9.3K application of magnesium (Mg) or turf fertilizer or an 8N–0P–10K–4Mg plus micronutrients palm fertilizer at rates of micronutrient-containing fertilizers 10 or 20 g of nitrogen per tree four times per year. Tree height, width, caliper, and would result in superior growth or nutrient deficiency rating scores for nitrogen, potassium, and magnesium were visual quality. Gilman et al. (2000) determined at 1 year after planting (establishment period) and at 3 years after found no response to applied phos- planting (maintenance phase). Data from these measured variables were subjected phorus (P) or potassium (K) in live to principal component analysis to obtain a single measure of overall quality, namely, the scores for each tree on the first principal component. West Indian oak, but this species rarely exhibits mahogany showed no response to fertilization during or following establishment. deficiencies of any nutrient element in Either fertilizer type or rate improved live oak, black olive, and beautyleaf quality the landscape. over that of unfertilized controls during both establishment and maintenance Because responses to fertilization phases, but the high rate of the palm fertilizer was superior to either rate of the turf appear to vary greatly among species fertilizer for beautyleaf both during establishment and afterward. Leaf nutrient and in different soils and environ- concentrations generally were poorly correlated with overall tree quality, but ments, it is important to study the manganese concentrations differed significantly among treatments for all four growth responses of individual spe- species. Based on these results, fertilization of West Indian mahogany is not cies, especially on nutrient-poor soils. recommended, but live oak, black olive, and beautyleaf will benefit from fertilizer The purpose of this study was to applied at the time of planting and after establishment. determine how four trees commonly grown in south Florida respond to he response to fertilization of and much of that has used chinese two commercially available types of newly planted trees, as well as hibiscus (Hibiscus rosa-sinensis), a spe- fertilizer, a typical turf fertilizer that Testablished trees, appears to cies that may be atypical for tropical contains no Mg or water-soluble vary greatly depending on time since and subtropical trees because of micronutrients and a palm fertilizer transplanting, species, soil type, cli- its high nitrogen (N) requirements that contains large amounts of K, Mg, mate, method of application, and type (Broschat and Moore, 2010; Gilman, and soluble micronutrients, and to of fertilizer (Struve, 2002). Fertilizer 1987, 1988). determine if fertilizer rate is important, recommendations for deciduous trees Fertilizer requirements for trees both during and after establishment. growing in loam or clay soils in tem- during the first year after transplant- perate climates would not be expected ing may be different from that of Materials and methods to be appropriate for evergreen species established trees. Gilman and Yeager Trees grown in 10-L polypropyl- growing in sandy soils in subtropical (1990) did not notice significant dif- ene containers were transplanted into climates such as that of peninsular ferences in growth between fertilized a Margate fine sand soil (siliceous, Florida. Relatively little research has and unfertilized laurel oak (Quercus hyperthermic Mollic Psammaquent, been published on fertilizer require- laurifolia) during the short 17- pH 5.2) in Davie, FL, on 5 June ments of trees in sandy soils of Florida Fort Lauderdale Research and Education Center, Units University of Florida, 3205 College Avenue, Davie, To convert U.S. to SI, To convert SI to U.S., FL 33314 multiply by U.S. unit SI unit multiply by This research was supported by the Florida Agricul- 0.3048 ft m 3.2808 tural Experiment Station and by the USDA National 2 2 Institute of Food and Agriculture Hatch project FLT- 0.0929 ft m 10.7639 FTL-004945. 3.7854 gal L 0.2642 2.54 inch(es) cm 0.3937 I thank Susan Thor and Andy Fu for their assistance in 2 Á –2 this study. 4.8824 lb/1,000 ft g m 0.2048 10 meq/100 g mmolÁkg–1 0.1 1 Corresponding author. E-mail: tkbr@ufl.edu. 28.3495 oz g 0.0353 doi: 10.21273/HORTTECH03864-17 1 ppm mgÁg–1 1 • December 2017 27(6) 813 RESEARCH REPORTS 2012. Soil samples (n = 6) taken at the the black olive trees so all trees of this component typically contains high time of planting showed a mean or- species, including controls, received positive correlations for most or all ganic matter content of 5.0%, cation 40 g of triple superphosphate (0N– of the original variables with the first exchange capacity of 7.5 meq/100 g, 18.8P–0K) fertilizer [0–43–0 (Helena principal component, making it a use- available phosphorus P (P1) of 9.0 Chemical, Ft. Pierce, FL)] every 3 ful index of overall quality. These ppm, K averaged 16.3 ppm, Mg 35.8 months. In Jan. 2014 this amount scores for each tree on the first prin- ppm, and calcium (Ca) 2308 ppm. A was increased to 160 g/tree spread cipal component were further sub- randomized complete block design over a 4-m2 area surrounding each jected to analysis of variance (PROC was used with trees spaced 3 m apart tree. This P fertilization was done to GLM) with mean separation by the in linear blocks separated from other prevent the effects of P deficiency Waller–Duncan k-ratio method (P = blocks by a distance of 5 m in all from confounding tree responses to 0.05) to determine treatment effects. directions. There were eight replicate the fertilizer treatments, none of At the end of the experiment (12 blocks containing one plant of each which contained any P. Dec. 2015), leaf samples consisting of species for each treatment. Species All trees received 2cmof the youngest fully expanded leaves on used were live oak, west indian ma- water from overhead irrigation each shoot were collected from each hogany, black olive, and beautyleaf, three times per week during the tree for nutrient analysis. Leaf samples four of the most common large tree first 6 months and twice per week were dried, ground, and digested species planted in south Florida. thereafter. An area of 1m2 around using a modified Kjeldahl procedure Fertilizers were applied at the all trees was kept weed-free with (Hach et al., 1987), and they were time of transplanting and every 3 glyphosate. Minimal pruning was analyzed for N using an autoanalyzer months thereafter for 3 years. Treat- periodically done to establish (Seal Analytical, Mequon, WI), P by ments included 1) no fertilizer strong central leaders and good the ascorbic acid method (Kuo, (CONTROL), 2) a 24N–0P–9.3K branch structure. All trees were 1996), and K, Mg, Fe, and Mn by turf fertilizer [24–0–11 (Lesco, measured at the time of transplant- atomic absorption spectroscopy Cleveland, OH)] applied at a rate of ing and every year thereafter for (Perkin-Elmer, Waltham, MA). Leaf 41.7 g/tree, 3) the same turf fertilizer total height, width in two opposite nutrient concentration data for each applied at 83.4 g/tree, 3) a 8N–0P– directions (parallel and perpendic- element were analyzed using analysis 10K–4Mg plus micronutrients palm ular to rows), and stem caliper at of variance with mean separations by fertilizer [8–0–12 (Nurserymen’s 30 cm above the ground. The two the Waller–Duncan k-ratio method Sure Gro, Vero Beach, FL)] applied width measurements were averaged as used for plant quality data. Pearson at 125 g/tree, and 4) the same palm to obtain a single value. Growth correlation coefficients were calculated fertilizer applied at 250 g/tree. The was calculated as the height at the for all tree quality and leaf nutrient turf and palm fertilizer application end of 1 year (establishment pe- concentration variables using PROC rates provided equivalent amounts of riod) minus initial height. Growth CORR. N equal to 10 and 20 g/tree of N per during the maintenance phase was application for the low and high rates, calculated as the final height after 3 Results and discussion respectively. Fifty percent of the N in years minus the height at the end of A summary of the principal com- the turf fertilizer was in controlled- the establishment phase.
Recommended publications
  • Calophyllum Inophyllum L
    Calophyllum inophyllum L. Guttiferae poon, beach calophyllum LOCAL NAMES Bengali (sultanachampa,punnang,kathchampa); Burmese (ph’ông,ponnyet); English (oil nut tree,beauty leaf,Borneo mahogany,dilo oil tree,alexandrian laurel); Filipino (bitaog,palo maria); Hindi (surpunka,pinnai,undi,surpan,sultanachampa,polanga); Javanese (njamplung); Malay (bentagor bunga,penaga pudek,pegana laut); Sanskrit (punnaga,nagachampa); Sinhala (domba); Swahili (mtondoo,mtomondo); Tamil (punnai,punnagam,pinnay); Thai (saraphee neen,naowakan,krathing); Trade name (poon,beach calophyllum); Vietnamese (c[aa]y m[uf]u) Calophyllum inophyllum leaves and fruit (Zhou Guangyi) BOTANIC DESCRIPTION Calophyllum inophyllum is a medium-sized tree up to 25 m tall, sometimes as large as 35 m, with sticky latex either clear or opaque and white, cream or yellow; bole usually twisted or leaning, up to 150 cm in diameter, without buttresses. Outer bark often with characteristic diamond to boat- shaped fissures becoming confluent with age, smooth, often with a yellowish or ochre tint, inner bark usually thick, soft, firm, fibrous and laminated, pink to red, darkening to brownish on exposure. Crown evenly conical to narrowly hemispherical; twigs 4-angled and rounded, with plump terminal buds 4-9 mm long. Shade tree in park (Rafael T. Cadiz) Leaves elliptical, thick, smooth and polished, ovate, obovate or oblong (min. 5.5) 8-20 (max. 23) cm long, rounded to cuneate at base, rounded, retuse or subacute at apex with latex canals that are usually less prominent; stipules absent. Inflorescence axillary, racemose, usually unbranched but occasionally with 3-flowered branches, 5-15 (max. 30)-flowered. Flowers usually bisexual but sometimes functionally unisexual, sweetly scented, with perianth of 8 (max.
    [Show full text]
  • Calophyllum Inophyllum (Kamani) Clusiaceae (Syn
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Calophyllum inophyllum (kamani) Clusiaceae (syn. Guttiferae) (mangosteen family) Alexandrian laurel, beach mahogany, beauty leaf, poon, oil nut tree (English); beach calophyllum (Papua New Guinea), biyuch (Yap); btaches (Palau); daog, daok (Guam, N. Marianas); dilo (Fiji); eet (Kosrae); feta‘u (Tonga); fetau (Samoa); isou (Pohnpei); kamani, kamanu (Hawai‘i); lueg (Marshalls); rakich (Chuuk); tamanu (Cook Islands, Society Islands, Marquesas); te itai (Kiribati) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Kamani trees are most commonly seen along the shoreline (Hilo, Hawai‘i). IN BRIEF Growth rate May initially grow up to 1 m (3.3 ft) in height Distribution Widely dispersed throughout the tropics, in- per year on good sites, although usually much more slowly. cluding the Hawaiian and other Pacific islands. Main agroforestry uses Mixed-species woodlot, wind- break, homegarden. Size Typically 8–20 m (25–65 ft) tall at maturity. Main products Timber, seed oil. Habitat Strand or low-elevation riverine, 0–200 m (660 ft) Yields No timber yield data available; 100 kg (220 lb) in Hawai‘i, up to 800 m (2000 ft) at the equator; mean an- nuts/tree/yr yielding 5 kg (11 lb) oil. nual temperatures 18–33°C (64–91°F); annual rainfall 1000– Intercropping Casts a heavy shade, so not suitable as an 5000 mm (40–200 in). overstory tree; has been grown successfully in mixed-species Vegetation Occurs on beach and in coastal forests. timber stands. Soils Grows best in sandy, well drained soils.
    [Show full text]
  • Calophyllum Inophyllum Beauty Leaf1 Edward F
    Fact Sheet ST-115 November 1993 Calophyllum inophyllum Beauty Leaf1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION This upright, pyramidal, densely foliated evergreen tree can reach 60 feet in height in the forest with a 30 to 40-foot spread, but is generally much smaller because it grows slowly (Fig. 1). This is an asset in tropical landscapes, where many other plants grow so fast. Greenish, showy, 3/4-inch, very fragrant flowers are produced on eight-inch racemes in the summer. The round, yellow, 1.5-inch-wide fruit contains a single seed with a nutlike kernel that may be poisonous. The seven-inch-long, glossy, dark green, stiff, leathery leaves have numerous, distinct parallel veins at right angles to the midrib. The trunk has light grey, shallowly-ridged bark, and the wood is valued for boat building and cabinet work. GENERAL INFORMATION Scientific name: Calophyllum inophyllum Figure 1. Middle-aged Beauty Leaf. Pronunciation: kal-oh-FILL-um EYE-no-fill-um Common name(s): Beauty Leaf where air pollution, poor drainage, compacted soil, Family: Clusiaceae and/or drought are common USDA hardiness zones: 10B through 11 (Fig. 2) Availability: grown in small quantities by a small Origin: not native to North America number of nurseries Uses: container or above-ground planter; espalier; hedge; large parking lot islands (> 200 square feet in DESCRIPTION size); wide tree lawns (>6 feet wide); medium-sized parking lot islands (100-200 square feet in size); Height: 35 to 50 feet medium-sized tree lawns (4-6 feet wide); Spread: 30 to 50 feet recommended for buffer strips around parking lots or Crown uniformity: irregular outline or silhouette for median strip plantings in the highway; near a deck Crown shape: round; pyramidal or patio; reclamation plant; screen; shade tree; Crown density: dense specimen; sidewalk cutout (tree pit); residential street Growth rate: medium tree; tree has been successfully grown in urban areas 1.
    [Show full text]
  • Calophyllum Inophyllum Linn
    Calophyllum inophyllum Linn. Scientific classification Kingdom: Plantae Order: Malpighiales Family: Calophyllaceae Genus: Calophyllum Species: C. inophyllum de.wikipedia.org Plant profile Calophyllum inophyllum is a low-branching and slow-growing tree with a broad and irregular crown. It usually reaches 8 to 20 metres (26 to 66 ft) in height. The flower is 25 millimetres (0.98 in) wide and occurs in racemose or paniculate inflorescences consisting of 4 to 15 flowers. Flowering can occur year-round, but usually two distinct flowering periods are observed, in late spring and in late autumn. The fruit (the ballnut) is a round, green drupe reaching 2 to 4 centimetres (0.79 to 1.57 in) in diameter and having a single large seed. When ripe, the fruit is wrinkled and its color varies from yellow to brownish-red. Uses Calophyllum inophyllum is a popular ornamental plant, its wood is hard and strong and has been used in construction or boatbuilding. Traditional Pacific Islanders used Calophyllum wood to construct the keel of their canoes while the boat sides were made from breadfruit (Artocarpus altilis) wood. The seeds yield a thick, dark green tamanu oil for medicinal use or hair grease. Active ingredients in the oil are believed to regenerate tissue, so is sought after by cosmetics manufacturers as an ingredient in skin cremes. The nuts should be well dried before cracking, after which the oil-laden kernel should be further dried. The first neoflavone isolated in 1951 from natural sources was calophyllolide from Calophyllum inophyllum seeds. The leaves are also used for skin care in Papua New Guinea, New Caledonia, and Samoa.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • Giant African Snail Cooperative Eradication Program
    United States Department of Agriculture Giant African Snail Marketing and Regulatory Cooperative Programs Animal and Eradication Program Plant Health Inspection Service Miami-Dade County, Florida Environmental Assessment, October 2011 Giant African Snail Cooperative Eradication Program Environmental Assessment October 2011 Agency Contact: Andrea Simao USDA–APHIS–PPQ Emergency and Domestic Programs 4700 River Road, Unit 26 Riverdale, MD 20737 __________________________________________________________ The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. __________________________________________________________ Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product
    [Show full text]
  • Woody and Herbaceous Plants Native to Haiti for Use in Miami-Dade Landscapes1
    Woody and Herbaceous Plants Native to Haiti For use in Miami-Dade Landscapes1 Haiti occupies the western one third of the island of Hispaniola with the Dominican Republic the remainder. Of all the islands within the Caribbean basin Hispaniola possesses the most varied flora after that of Cuba. The plants contained in this review have been recorded as native to Haiti, though some may now have been extirpated due in large part to severe deforestation. Less than 1.5% of the country’s original tree-cover remains. Haiti’s future is critically tied to re- forestation; loss of tree cover has been so profound that exotic fast growing trees, rather than native species, are being used to halt soil erosion and lessen the risk of mudslides. For more information concerning Haiti’s ecological plight consult references at the end of this document. For present purposes all of the trees listed below are native to Haiti, which is why non-natives such as mango (the most widely planted tree) and other important trees such as citrus, kassod tree (Senna siamea) and lead tree (Leucanea leucocephala) are not included. The latter two trees are among the fast growing species used for re-forestation. The Smithsonian National Museum of Natural History’s Flora of the West Indies was an invaluable tool in assessing the range of plants native to Haiti. Not surprisingly many of the listed trees and shrubs 1 John McLaughlin Ph.D. U.F./Miami-Dade County Extension Office, Homestead, FL 33030 Page | 1 are found in other parts of the Caribbean with some also native to South Florida.
    [Show full text]
  • A Short Review on Calophyllum Inophyllum and Thespesia Populnea
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2016; 8(12); 2056-2062 ISSN: 0975-4873 Review Article Medicinal Plants of Sandy Shores: A Short Review on Calophyllum inophyllum and Thespesia populnea Mami Kainuma1, Shigeyuki Baba1, Hung Tuck Chan1, Tomomi Inoue2, Joseph Tangah3, Eric Wei Chiang Chan4* 1Secretariat, International Society for Mangrove Ecosystems, c/o Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan 2Centre for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba 305-0053, Japan 3Forest Research Centre, Sabah Forestry Department, Sandakan 90009, Sabah, Malaysia 4Faculty of Applied Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia Available Online: 15th December, 2016 ABSTRACT The phytochemistry and pharmacology of two common tree species of sandy shores, namely, Calophyllum inophyllum and Thespesia populnea have been selected for review. There was global interest in C. inophyllum after its leaves were reported to possess anti-human immunodeficiency virus (HIV) properties. Since then, extensive research has been conducted on Calophyllum species. Endowed with prenylated xanthones, pyranocoumarins and friedelane triterpenoids, C. inophyllum possesses anti-HIV and anticancer properties. Other pharmacological properties include anti-inflammatory, analgesic, anti- dyslipidemic and wound healing activities. Phytochemical constituents of T. populnea include sesquiterpene quinones, sesquiterpenoids and flavonoids. Many studies have been conducted on the pharmacological properties of T. populnea with major activities of analgesic, anti-inflammatory, anti-diabetic and anti-hyperglycaemic reported in the bark, leaf, fruit and seed. Anticancer properties are reported in the wood. Representing the flora of sandy shores, both C. inophyllum and T. populnea have promising and exciting medicinal potentials.
    [Show full text]
  • Systematics of the Thai Calophyllaceae and Hypericaceae with Comments on the Kielmeyeroidae (Clusiaceae)
    THAI FOREST BULL., BOT. 46(2): 162–216. 2018. DOI https://doi.org/10.20531/tfb.2018.46.2.08 Systematics of the Thai Calophyllaceae and Hypericaceae with comments on the Kielmeyeroidae (Clusiaceae) CAROLINE BYRNE1, JOHN ADRIAN NAICKER PARNELL1,2,* & KONGKANDA CHAYAMARIT3 ABSTRACT The Calophyllaceae and Hypericaceae are revised for Thailand and their relationships to the Clusiaceae and Guttiferae are briefly discussed. Thirty-two species are definitively recognised in six genera, namely: Calophyllum L., Kayea Wall., Mammea L. and Mesua L. in the Calophyllaceae and Cratoxylum Blume. and Hypericum L. in the Hypericaceae. A further four species of Calophyllum are tentatively noted as likely to occur in Thailand. Descriptions, full synonyms relevant to the Thai taxa, distribution maps, ecology, phenology, vernacular names, specimens examined and provisional keys are given. All species previously classified in the genus Mesua have been moved to the genus Kayea, except Mesua ferrea L. Two taxa were found to be endemic to Thailand: Mammea harmandii (Pierre) Kosterm. and Hypericum siamense N.Robson. The distribution for the families in Thailand was found to vary with the Thai Calophyllaceae being found mainly in Central and Peninsular Thailand whilst the Thai Hypericaceae were found mainly in the North and the North-East of Thailand. Overall the numbers of collections housed in herbaria are few and more collections are necessary in order to give a comprehensive account of their distributions in Thailand. KEYWORDS: Guttiferae, Flora of Thailand. Published online: 24 December 2018 INTRODUCTION from herbarium notes or directly from dried material. Ecological information was taken from specimens, The present work forms the basis of an account from field observations and from the literature.
    [Show full text]
  • Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
    Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Flora of Singapore Precursors, 17: Clarification of Some Names in the Genus Calophyllum As Known in Singapore
    Gardens' Bulletin Singapore 71 (2): 407–414. 2019 407 doi: 10.26492/gbs71(2).2019-08 Flora of Singapore precursors, 17: Clarification of some names in the genus Calophyllum as known in Singapore W.W. Seah1, S.M.X. Hung2 & K.Y. Chong2 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore ABSTRACT. The species, Calophyllum soulattri, is found to have been wrongly included in Singapore’s native flora. The nameCalophyllum wallichianum var. wallichianum is also found to have been misapplied to a taxon in Singapore and should rather be called Calophyllum rufigemmatum. The nomenclatural history and problems of both taxa are discussed in this paper. Keywords. Calophyllaceae, C. rufigemmatum, C. wallichianum, Clusiaceae, nomenclature, taxonomy Introduction The genus Calophyllum L. had long been included in the family Clusiaceae Lindl. (alternate name: Guttiferae Juss.) until recent molecular phylogenetic studies showed that it was necessary to transfer it, along with several other genera (e.g. Kayea Wall., Mammea L. and Mesua L.) from the Clusiaceae subfamily Kielmeyeroideae, to the reinstated family Calophyllaceae J.Agardh (APG III, 2009; Wurdack & Davis, 2009). The genus was last revised by Stevens (1980) for the Old World, including the Indo- Malesian region, where it is mainly distributed. It now comprises about 190 recognised species worldwide (Stevens, 2001 onwards; Ramesh et al., 2012). In his revision of the genus, Stevens (1980) reported 17 taxa—including an unnamed species—for Singapore. Following his account, several authors (Keng, 1990; Turner, 1993; Chong et al., 2009) enumerated the species of the genus and recorded different numbers of taxa for Singapore (Table 1).
    [Show full text]
  • Branch Xylem Density Variations Across the Amazon Basin
    Biogeosciences, 6, 545–568, 2009 www.biogeosciences.net/6/545/2009/ Biogeosciences © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Branch xylem density variations across the Amazon Basin S. Patino˜ 1,2,*, J. Lloyd2, R. Paiva3,**, T. R. Baker2,*, C. A. Quesada2,3, L. M. Mercado4,*, J. Schmerler5,*, † M. Schwarz5,*, A. J. B. Santos6, , A. Aguilar1, C. I.Czimczik7,*, J. Gallo8, V. Horna9,*, E. J. Hoyos10, E. M. Jimenez1, W. Palomino11, J. Peacock2, A. Pena-Cruz˜ 12, C. Sarmiento13, A. Sota5,*, J. D. Turriago8, B. Villanueva8, P. Vitzthum1, E. Alvarez14, L. Arroyo15, C. Baraloto13, D. Bonal13, J. Chave16, A. C. L. Costa17, R. Herrera*, N. Higuchi3, T. Killeen18, E. Leal19, F. Luizao˜ 3, P. Meir20, A. Monteagudo11,12, D. Neil21, P. Nu´nez-Vargas˜ 11, M. C. Penuela˜ 1, N. Pitman22, N. Priante Filho23, A. Prieto24, S. N. Panfil25, A. Rudas26, R. Salomao˜ 19, N.Silva27,28, M. Silveira29, S. Soares deAlmeida19, A. Torres-Lezama30, R. Vasquez-Mart´ ´ınez11, I. Vieira19, Y. Malhi31, and O. L. Phillips2,*** 1Grupo de Ecolog´ıa de Ecosistemas Terrestres Tropicales, Universidad Nacional de Colombia, Sede Amazonia, Instituto Amazonico´ de Investigaciones-Imani, km. 2, v´ıa Tarapaca,´ Leticia, Amazonas, Colombia 2Earth and Biosphere Institute, School of Geography, University of Leeds, LS2 9JT, England, UK 3Institito National de Pesquisas Amazonicas,ˆ Manaus, Brazil 4Centre for Ecology and Hydrology, Wallingford, England, UK 5Fieldwork Assistance, Postfach 101022, 07710 Jena, Germany 6Departamento de Ecologia,
    [Show full text]