The Sirius Passet Lagerstätte of North Greenland: a Remote Window on the Cambrian Explosion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Sponge Evolution: a Review and Phylogenetic Framework
Available online at www.sciencedirect.com ScienceDirect Palaeoworld 27 (2018) 1–29 Review Early sponge evolution: A review and phylogenetic framework a,b,∗ a Joseph P. Botting , Lucy A. Muir a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China b Department of Natural Sciences, Amgueddfa Cymru — National Museum Wales, Cathays Park, Cardiff CF10 3LP, UK Received 27 January 2017; received in revised form 12 May 2017; accepted 5 July 2017 Available online 13 July 2017 Abstract Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath. -
Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 67, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE (With Plates 60 to 90) BY CHARLES D. WALCOTT (Publication 2580) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1920 Z$t Bovb Qgattimote (press BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE By CHARLES D. WALCOTT (With Plates 60 to 90) CONTENTS PAGE Introduction 263 Habitat = 265 Genera and species 265 Comparison with recent sponges 267 Comparison with Metis shale sponge fauna 267 Description of species 269 Sub-Class Silicispongiae 269 Order Monactinellida Zittel (Monaxonidae Sollas) 269 Sub-Order Halichondrina Vosmaer 269 Halichondrites Dawson 269 Halichondrites elissa, new species 270 Tuponia, new genus 271 Tuponia lineata, new species 272 Tuponia bellilineata, new species 274 Tuponia flexilis, new species 275 Tuponia flexilis var. intermedia, new variety 276 Takakkawia, new genus 277 Takakkawia lineata, new species 277 Wapkia, new genus 279 Wapkia grandis, new species 279 Hazelia, new genus 281 Hazelia palmata, new species 282 Hazelia conf erta, new species 283 Hazelia delicatula, new species 284 Hazelia ? grandis, new species 285. Hazelia mammillata, new species 286' Hazelia nodulifera, new species 287 Hazelia obscura, new species 287 Corralia, new genus 288 Corralia undulata, new species 288 Sentinelia, new genus 289 Sentinelia draco, new species 290 Smithsonian Miscellaneous Collections, Vol. 67, No. 6 261 262 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 6j Family Suberitidae 291 Choia, new genus 291 Choia carteri, new species 292 Choia ridleyi, new species 294 Choia utahensis, new species 295 Choia hindei (Dawson) 295 Hamptonia, new genus 296 Hamptonia bowerbanki, new species 297 Pirania, new genus 298 Pirania muricata, new species 298 Order Hexactinellida O. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Paleontological Contributions
Paleontological Contributions Number 3 A new Cambrian arthropod, Emeraldella brutoni, from Utah Martin Stein, Stephen B. Church, and Richard A. Robison September 30, 2011 Lawrence, Kansas, USA ISSN 1946-0279 paleo.ku.edu/contributions http://hdl.handle.net/1808/8086 Paleontological Contributions September 30, 2011 Number 3 A NEW CAMBRIAN ARTHROPOD, EMERALDELLA BRUTONI, FROM UTAH Martin Stein,1* Stephen B. Church,2 and Richard A. Robison1 1University of Kansas, Department of Geology, Lawrence, Kansas 66045, USA, [email protected], [email protected]; 2Sinclair Oil & Gas Company, Salt Lake City, Utah 84130, USA, [email protected] ABSTRACT Emeraldella is a rare arthropod of relatively large body size that belongs with the trilobite-like arthropods, Artiopoda. E. brutoni n. sp. from the Wheeler Formation of west-central Utah is the second species described and marks the first confirmed occurrence of Emeraldella outside the Burgess Shale of British Columbia. An articulated, flagelliform telson, similar to that of the Burgess Shale taxon Molaria, is recognized in Emeraldella. Evidence for the presence of lamellae on the exopods of Molaria is presented, supporting affinity of that taxon with Artiopoda. A close relationship between Emeraldella and Molaria is tentatively suggested, based on the morphology of tergites and telson. Keywords: Wheeler Formation, Drum Mountains, exceptional preservation, Arthropoda INTRODUCTION others (2007), Elrick and Hinnov (2007), Brett and others (2009), Halgedahl and others (2009), and Howley and Jiang (2010), The Wheeler Formation of west-central Utah is well known have provided more detailed information about its stratigraphy for its diverse and exceptionally preserved biota, which was and depositional environments. One of us (S.B.C.) collected the reviewed by Robison (1991). -
Abstract Volume
https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E. -
The Morphology and Evolutionary Significance of the Anomalocaridids
!"#$ %&'%( )*+'*'&&'(,', -.---'/( ! " #$%%&&&'&& $ ($ $)*$ + , $) -.)%&&)*$ $ $ ) - ) /0)0& ) )1234/56467706//%868) - && 7&& 9 $ :. , ; $9 $! + )*$ $$21$ . +$ 6 < ) # . $ $ $ +$$ +$ 6 $ $ $ $ $< $ + )= $ $ $$$ $ )*$ $ !+$ $ +$ $ ! $ )= + + $21$ $ + $ $ $ $ + $ $$) 3+ $$ 21$ ! + +$ 6 $ $$ $ $ $+$ ) $ $ $ +$ + $ < )*+ + $ $ $ $ ) - $ $ $ $$ >+6 $$ $+$ $ $ 6 $ )*$$ $$ $ $. $ +! +$ ) $ + $ $$ +! +$$ 6!)*$ $ $2 1$ $ + ! + ) $ $ $.$ 9 .$ < $21$)* $1( 3 $? ) ! + +$$ $ $$ 6 $ $ )*$$ + $$ . +$$ $ $$ ) !" # . 21$ $% & %' %($)*% %&+,-./* %" @- .)%&& 11376%0 1234/56467706//%868 ' ''' 60&%A$ 'BB )!)B C D ' ''' 60&%E To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Daley, A.C., Budd, G.E., Caron, J.-B., Edgecombe, G.D. & Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323:1597-1600. II Daley, A.C. & Budd, G.E. New anomalocaridid appendages from the Burgess Shale, Canada. In press. Palaeontology. III Daley, A.C., Budd, -
An Early Cambrian Filter Feeding 2 Anomalocarid 3 4 Jakob Vinther1, Martin Stein2, Nicholas R
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Bath Research Portal Citation for published version: Vinther, J, Stein, M, Longrich, NR & Harper, DAT 2014, 'A suspension-feeding anomalocarid from the Early Cambrian', Nature, vol. 507, no. 7493, pp. 496-499. https://doi.org/10.1038/nature13010 DOI: 10.1038/nature13010 Publication date: 2014 Document Version Peer reviewed version Link to publication University of Bath General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 13. May. 2019 1 An Early Cambrian filter feeding 2 anomalocarid 3 4 Jakob Vinther1, Martin Stein2, Nicholas R. Longrich3 & David A. T. Harper4 5 6 1Schools of Earth Sciences and Biological Sciences, University of Bristol, Woodland Road, Bristol 7 BS8 1UG, United Kingdom. 2Natural History Museum of Denmark, Copenhagen University, 8 Universitetsparken 15, 2100 Copenhagen Ø, Denmark. 3Department of Biology and Biochemistry, 9 University of Bath, Bath BA2 7AY, United Kingdom. 4Department of Earth Sciences, Durham 10 University, Durham DH1 3LE, United Kingdom. 11 12 13 Large, actively swimming filter feeders evolved several times in Earth’s 14 history, arising independently from groups as diverse as sharks, rays, 15 teleost fishes1, and in mysticete whales2. -
The Palaeoscolecida and the Evolution of the Ecdysozoa Andrey Yu
The Palaeoscolecida and the evolution of the Ecdysozoa Andrey Yu. Zhuravlev1, José Antonio Gámez Vintaned2 and Eladio Liñán1 1Área y Museo de Paleontología, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, E-50009 Zaragoza, Spain 2Área de Paleontología, Departamento de Geologica, Facultad de Ciencias Biológicas, Univeristat de València, C/ Doctor Moliner, 50, E-46100 Burjassot, Spain Email: [email protected] AbstrAct rÉsUMÉ Palaeoscolecidans are a key group for understanding the ear- Les Paléoscolécides sont un groupe clé pour la compréhen- ly evolution of the Ecdysozoa. The Palaeoscolecida possess sion des débuts de l’évolution des Ecdysozoa. Les Pal- a terminal mouth and an anus, an invertible proboscis with aeoscolecida possèdent une bouche terminale et un anus, pointed scalids, a thick integument of diverse plates, sensory un proboscis inversible aux scalides pointues, un tégument papillae and caudal hooks. These are features that draw a épais de plaques diverses, des papilles sensorielles et des secret out of these worms, indicating palaeoscolecidan af- crochets caudaux. Ceux-ci sont des traits qui tirent un secret finities with the phylum Cephalorhyncha, which embraces de ces vers, ce qui indique des affinités paléoscolecides avec priapulids, kinorhynchs, loriciferans and nematomorphs. At le phylum des Cephalorhyncha qui inclut les priapulides, les the same time, the Palaeoscolecida share a number of char- kinorhynches, les loricifères et les nématomorphes. Cepen- acters with the lobopod-bearing Cambrian ecdysozoans, the dant, les Palaeoscolecida ont aussi quelques-uns des mêmes Xenusia. Xenusians commonly possess a terminal mouth, caractères que les Xenusia, ces écdysozaires cambriens qui a proboscis (although not retractable), and a thick integu- portaient des lobopodes. -
From the Lower Ordovician of the Central Anti-Atlas (Morocco)
Journal of Paleontology, 91(4), 2017, p. 685–714 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2017.6 Morphological disparity and systematic revision of the eocrinoid genus Rhopalocystis (Echinodermata, Blastozoa) from the Lower Ordovician of the central Anti-Atlas (Morocco) Ninon Allaire,1,2 Bertrand Lefebvre,2 Elise Nardin,3 Emmanuel L.O. Martin,2 Romain Vaucher,2 and Gilles Escarguel4 1Université de Lille, CNRS, UMR 8198 Evo-Eco-Paleo, F-59000 Lille, France 〈[email protected]〉 2Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622 Villeurbanne, France 〈[email protected]〉, 〈[email protected]〉, 〈[email protected]〉 3Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS/UPS/IRD, 14 avenue Edouard Belin, 31400 Toulouse, France 〈[email protected]〉 4Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France 〈[email protected]〉 Abstract.—The genus Rhopalocystis (Eocrinoidea, Blastozoa) is characterized by both a short stratigraphic range (Fezouata Shale, middle Tremadocian to middle Floian, Lower Ordovician) and a reduced geographic extension (Agdz-Zagora area, central Anti-Atlas, Morocco). Since the original description of its type species (R. destombesi Ubaghs, 1963), three successive revisions of the genus Rhopalocystis have led to the erection of nine additional species. The morphological disparity within this genus is here critically reassessed on the basis of both historical material and new recently collected samples. The detailed examination of all specimens, coupled with morphometric and cladistic analyses, points toward a relatively strong support for five morphotypes. -
First Skeletal Microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East)
First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East) OLAF ELICKI ELICKI, O., 2011:12:23. First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East). Memoirs of the Association of Australasian Palaeontologists 42, 153-173. ISSN 0810-8889. For the first time, a Cambrian microfauna is reported from the Jordan Rift Valley. The fauna comes from low-latitude carbonates of the Numayri Member (Burj Formation, Jordan) and to a lesser degree the equivalent Nimra Member (Timna Formation, Israel). Co-occuring with trilobite, brachiopod and hyolith macrofossils, the microfauna is represented mostly by disarticulated poriferid (mostly hexactinellids) and echinoderm remains (eocrinoids and edrioasteroids). Among the hexactinellids, Rigbyella sp., many isolated triactins and tetractins, as well as a few pentactins and rare hexactins occur. Additional poriferid spicules come from heteractinids (Eiffelia araniformis [Missarzhevsky, 1981]) and polyactinellids (?Praephobetractinia). Chancelloriids (Archiasterella cf. hirundo Bengtson, 1990, Allonnia sp., Chancelloria sp., ?Ginospina sp.) are a rather rare faunal element. Micromolluscs are represented mainly by an indeterminable helcionellid. The probable octocoral spicule Microcoryne cephalata (Bengtson, 1990), torellellid and hyolithellid hyolithelminths, and a bradoriid arthropod occur as very few or single specimens. The same is the case with a probable siphogonuchitid. The occurrence of a cornulitid related microfossil may extend the stratigraphic range of this fossil group significantly. The rather low-diversity microfauna is overwhelmingly dominated by sessile epibenthic biota. The preferred feeding habit seems to have been suspension feeding and minor deposit feeding. The microfauna from the Jordan Rift Valley is typical for low-latitude carbonate environments of Cambrian Series 3 age that corresponds to the traditional late early to middle Cambrian. -
Arthropoda, Trilobitomorpha
MEROSTOMOIDEA (ARTHROPODA, TRILO BITOMORPHA) FROM THE AUSTRALIAN MIDDLE TRIASSIC By E. F. RIEK Division of Entomology, C.S.I.R.O., Canberra. Plate 35. Figs. 1 and 2. Manuscript received August 28, 1963 SUMMARY A monotypic genus of a new family of Merostomoidea is described from the Middle Triassic of Brookvale, New South Wales, Australia. The known range of the subclass, previously recorded from the Middle Cambrian, is extended considerably by this record. Three well preserved non-insect arthropod specimens, apart from the xiphosuron, Austrolimulus ftetcheri Riek, (1955), have been collected from the Middle Triassic freshwater sediments at Brookvale, New South Wales. These sediments also contain abundant insects and fish. These three specimens bear a considerable resemblance in body shape to both the Synziphosurina (Merostomata) and the Merostomoidea (Trilobitomorpha). The post-cephalic portion of the body is divided into two distinct regions and ends in a long caudal style. Although appendages are not clearly preserved, their general structure can be distinguished below the crumpled pleural regions in one of the specimens and their bases distinguished in another. These numerous pairs of similar appendages are of trilobitomorph form. Trilobitomorpha, which are first recorded from the Lower Cambrian, are not known from strata younger than the Middle Permian and almost all the species occurring since the Cambrian are referred to the well-known trilobites (Class Trilobita). The Class Trilobitoidea is, however, recorded from the Devonian as well as from the Cambrian. If these Middle Triassic specimens do belong to the Trilobitoidea they extend the known range of the class very considerably. There seeJ;llS little doubt from a study of the insect remains that the sediments in which these specimens occur are of Triassic, very probably Middle Triassic, age.