"Nematocera" Tipulidae

Total Page:16

File Type:pdf, Size:1020Kb

SIXTH QUIZ 1 Diptera: "Nematocera" Tipulidae - Crane Flies 2 Ptychopteridae - Phantom Crane Flies 3 Psychodidae - Moth Flies & Sand Flies 4 Culicidae - Mosquitoes 5 Ceratopogonidae - Biting Midges, No-see-ums, Punkies 6 Chironomidae - Midges 7 Simuliidae - Black Flies 8 Bibionidae - March Flies 9 Mycetophilidae - Fungus Gnats 10 Sciaridae - Dark-winged Fungus Gnats 11 Cecidomyiidae - Gall Midges 12 Diptera: Brachycera Stratiomyidae - Soldier Flies 13 Tabanidae - Horse & Deer Flies 14 Rhagionidae - Snipe Flies 15 Asilidae - Robber Flies 16 Bombyliidae - Bee Flies 17 Empididae - Dance Flies 18 Dolichopodidae - Long-legged Flies 19 Lonchopteridae - Spear-winged Flies 20 Phoridae - Humpbacked Flies 21 Platypezidae - Flat-footed Flies 22 Pipunculidae - Big-headed Flies 23 Syrphidae - Flower Flies 24 Conopidae - Thick-headed Flies 25 Micropezidae - Stilt-legged Flies 26 Diopsidae - Stalk-eyed Flies 27 Ulidiidae - Picture-winged Flies 28 Pyrgotidae - Pyrgotid Flies 29 Tephritidae - Fruit Flies 30 Sepsidae - Black Scavenger Flies 31 Sciomyzidae - Marsh Flies 32 Sphaeroceridae - Small Dung Flies 33 Anthomyzidae 34 Agromyzidae - Leaf-miner Flies 35 Ephydridae - Shore Flies 36 Drosophilidae - Pomace Flies, Vinegar Flies, Small Fruit Flies 37 Chloropidae - Grass Flies 38 Hippoboscidae - Louse Flies 39 Oestridae - Bot Flies & Warble Flies 40 Anthomyiidae 41 Muscidae - House Flies 42 Calliphoridae - Blow Flies 43 Sarcophagidae - Flesh Flies 44 Tachinidae - Tachinid Flies 1 Lepidoptera Tineidae - Clothes Moths 2 Psychidae - Bagworm Moths 3 Plutellidae - Diamondback Moths 4 Yponomeutidae - Ermine Moths 5 Sesiidae - Clear-winged Moths 6 Cossidae - Carpenter and Leopard Moths 7 Tortricidae - Leafrollers 8 Limacodidae - Slug Caterpillar Moths 9 Pyralidae/Crambidae, Snout Moths, Grass-Veneers, Aquatic Moths, Pyraustines, & Others 10 Pterophoridae - Plume Moths 11 Drepanidae - Hooktip Moths 12 Geometridae - Geometer Moths 13 Lasiocampidae - Lappet Moths & Tent Caterpillars 14 Saturniidae - Giant Silkworm Moths 15 Sphingidae - Hawk, Sphinx, & Hummingbird Moths 16 Notodontidae - Prominents 17 Erebidae/Noctuidae - - Loopers, Daggers, Darts, Underwing Moths, etc. 18 Erebidae, Arctiinae - Tiger Moths, Lichen Moths, Litter Moths, Owlets, Snouts 19 Erebidae, Lymantriinae - Tussock Moths 20 Hesperiidae - Skippers 21 Papilionidae - Swallowtail Butterflies 22 Pieridae - Sulphurs, Whites, & Orange-tiped Butterflies 23 Lycaenidae - Hairstreaks, Coppers, & Blues 24 Nymphalidae -Brush-footed Butterflies 25 Nymphalidae, Danainae - Milkweed Butterflies 26 Nymphalidae, Satyrinae - Nymphs & Satyrs.
Recommended publications
  • Ancient Roaches Further Exemplify 'No Land Return' in Aquatic Insects
    Gondwana Research 68 (2019) 22–33 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Ancient roaches further exemplify ‘no land return’ in aquatic insects Peter Vršanský a,b,c,d,1, Hemen Sendi e,⁎,1, Danil Aristov d,f,1, Günter Bechly g,PatrickMüllerh, Sieghard Ellenberger i, Dany Azar j,k, Kyoichiro Ueda l, Peter Barna c,ThierryGarciam a Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia b Slovak Academy of Sciences, Institute of Physics, Research Center for Quantum Information, Dúbravská cesta 9, Bratislava 84511, Slovakia c Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 106, 840 05 Bratislava, Slovakia d Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868 Moscow, Russia e Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia f Cherepovets State University, Cherepovets 162600, Russia g Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany h Friedhofstraße 9, 66894 Käshofen, Germany i Bodelschwinghstraße 13, 34119 Kassel, Germany j State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China k Lebanese University, Faculty of Science II, Fanar, Natural Sciences Department, PO Box 26110217, Fanar - Matn, Lebanon l Kitakyushu Museum, Japan m River Bigal Conservation Project, Avenida Rafael Andrade y clotario Vargas, 220450 Loreto, Orellana, Ecuador article info abstract Article history: Among insects, 236 families in 18 of 44 orders independently invaded water. We report living amphibiotic cock- Received 13 July 2018 roaches from tropical streams of UNESCO BR Sumaco, Ecuador.
    [Show full text]
  • Diptera, Nematocera) from the Mediterranean Region*)
    ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA 14 321-338 München, 3 1 . Oktober 1 991 ISSN0341-8391 New and remarkable species of Mycetophiloidea (Diptera, Nematocera) from the Mediterranean region*) By Norbert Caspers Caspers, N. (1991): New and remarkable species of Mycetophiloidea (Diptera, Nematocera) from the Mediterranean region. - Spixiana 14/3: 321-338. Descriptions of adult males of six neu species of the superfamily Mycetophiloidea (Diptera, Nematocera) from the Mediterranean region are presented: Orfelia persimi- lis, spec. nov. (family Keroplatidae) from Sardinia (Italy); Ectrepesthoneura chand- leri, spec. nov. from Crete (Greece), Leia umbrosa, spec. nov. from Corsica (France), Anatella longiflagellata, spec. nov. and Phronia incisa spec. nov. from Turkey, Sceptonia curvisetosa, spec. nov. from Greece, last five belonging to the family Mycetophilidae sensu Malloch (1917). In addition, new findings of two remarkable and hitherto rarely found species of Mycetophiloidea (Sciopbila kasbmirensis Zaitzev, Phronia tyrrhenica Edwards) are presented. Prof. Dr. Norbert Caspers, St.-Maternus-Eck 14 a, W-5067 Bechen, Germanv Introduction Since the early seventies Dr. H. Malicky (Biological Station Lunz, Austria) has been performing many entomological field trips to Southern Europe, with the aim to clear up the systematics and the biogeographic distribution of the caddis flies (Trichoptera) of that previously rather neglected faunal region. Besides Trichoptera he also collected a comprehensive material of many other aquatic insect groups, which meanwhile has been worked upon and has been published bv different authors. Among the "non-target-groups" of this study the portion of the fungus gnats (Mycetophiloidea) was relatively low as compared to all aquatic insect groups.
    [Show full text]
  • Insects Commonly Mistaken for Mosquitoes
    Mosquito Proboscis (Figure 1) THE MOSQUITO LIFE CYCLE ABOUT CONTRA COSTA INSECTS Mosquitoes have four distinct developmental stages: MOSQUITO & VECTOR egg, larva, pupa and adult. The average time a mosquito takes to go from egg to adult is five to CONTROL DISTRICT COMMONLY Photo by Sean McCann by Photo seven days. Mosquitoes require water to complete Protecting Public Health Since 1927 their life cycle. Prevent mosquitoes from breeding by Early in the 1900s, Northern California suffered MISTAKEN FOR eliminating or managing standing water. through epidemics of encephalitis and malaria, and severe outbreaks of saltwater mosquitoes. At times, MOSQUITOES EGG RAFT parts of Contra Costa County were considered Most mosquitoes lay egg rafts uninhabitable resulting in the closure of waterfront that float on the water. Each areas and schools during peak mosquito seasons. raft contains up to 200 eggs. Recreational areas were abandoned and Realtors had trouble selling homes. The general economy Within a few days the eggs suffered. As a result, residents established the Contra hatch into larvae. Mosquito Costa Mosquito Abatement District which began egg rafts are the size of a grain service in 1927. of rice. Today, the Contra Costa Mosquito and Vector LARVA Control District continues to protect public health The larva or ÒwigglerÓ comes with environmentally sound techniques, reliable and to the surface to breathe efficient services, as well as programs to combat Contra Costa County is home to 23 species of through a tube called a emerging diseases, all while preserving and/or mosquitoes. There are also several types of insects siphon and feeds on bacteria enhancing the environment.
    [Show full text]
  • Diptera: Psychodidae) of Northern Thailand, with a Revision of the World Species of the Genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini)" (2005)
    Masthead Logo Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2005 A review of the moth flies D( iptera: Psychodidae) of northern Thailand, with a revision of the world species of the genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini) Gregory Russel Curler Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Curler, Gregory Russel, "A review of the moth flies (Diptera: Psychodidae) of northern Thailand, with a revision of the world species of the genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini)" (2005). Retrospective Theses and Dissertations. 18903. https://lib.dr.iastate.edu/rtd/18903 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A review of the moth flies (Diptera: Psychodidae) of northern Thailand, with a revision of the world species of the genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini) by Gregory Russel Curler A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Entomology Program of Study Committee: Gregory W. Courtney (Major Professor) Lynn G. Clark Marlin E. Rice Iowa State University Ames, Iowa 2005 Copyright © Gregory Russel Curler, 2005. All rights reserved. 11 Graduate College Iowa State University This is to certify that the master's thesis of Gregory Russel Curler has met the thesis requirements of Iowa State University Signatures have been redacted for privacy Ill TABLE OF CONTENTS LIST OF FIGURES ..............................
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • IV. Sandflies and Midges - Psychodidae and Ceratopogonidae
    IV. Sandflies and Midges - Psychodidae and Ceratopogonidae 1. PARASITES RICKETTSIAE Grubyella ochoterenai Culicoides phlebotomus (exposed adults died, exhibiting Ricksettia sp. fungal outgrowths) (Ciferri, 1929). Phlebotomus vexator (in gonads) (Hertig, 1936). Penicillium glaucum P. papatasii (killed larvae in the laboratory) (Zotov, 1930). BACTERIA PROTOZOA Bacteria Ceratopogonidae (larvae) 1 (Mayer, 1934). (1) MASTIGOPHORA Culicoides nubeculosus (in fat body of larvae) (Lawson, 1951). Crithidia sp. C. nubeculosus (Steinhaus, 1946). P. baghdadis (Adler & Theodor, 1929). Pseudomonas sp. Herpetomonas phlebotomi Culicoides salinarius (Becker, 1958). P. minutus (10% incidence in India) (Mackie, 1914; Patton, 1919). Spirochaeta phlebotomi (= Treponema phlebotomi) P. minutus (in gut) (Shortt, 1925). P. perniciosus (in gut) (Pringault, 1921a). P. papatasii (in gut) (Mackie, 1914). (2) SPOROZOA FUNGI (a) GREGARINIDA Aspergillus sp. Lankesteria ? Phlebotomus spp. (young larvae may become entangled P. papatasii (no pathological damage) (Missiroli, 1932). in mycelium; spores germinate in larval intestine, the mycelium invading muscles of thoracic area and causing Monocystis mackiei death; this fungus is highly pathogenic in laboratory P. argentipes (25 % in nature) (Shortt & Swaminath, cultures) (Hertig & Johnson, 1961). 1927). P. papatasii (Missiroli, 1929b). Entomophthora papatasii P. papatasii (Marett, 1915). (b) HAEMOSPORIDIIDA E. phlebotomnus Haemoproteus canachites P. papatasii (Adler & Theodor, 1929). Culicoides sphagnumensis (Fallis & Bennett,
    [Show full text]
  • Lesser Dung Flies (Sphaeroceridae) of the Belgian Fauna: Little Known Nutrient Recyclers
    BULLETIN DE L'lNSTITUT ROY AL DES SCIENCES NATUR ELLES DE BELGIQUE BIOLOGIE, 72 -SUPPL.: 155 -157, 2002 BULLETIN VAN HET KONINKLIJK BELGISCI-IlNSTITUUT VOOR NATUURWETENSCI-IAPPE N BIOLOGIE, 72-SUPPL.: 155 -157, 2002 Lesser dung flies (Sphaeroceridae) of the Belgian fauna: little known nutrient recyclers L DE BRUYN, J. SCHEIRS & H. VAN GOSSUM Introduction Habitat specificity and indicator species The family Sphaeroceridae, or lesser dung flies, consists In recent decades, the conservation of insects has re­ of very common to rare, small to very small flies (PITKIN ceived increasing attention, not only because they are 1988). They can easily be distinguished from other fa­ - "worth conserving, but also because some insect groups milies by the distinctly widened and shortened first tar­ have been shown to be particularly good bio-indicators somere of the hind legs. Most species are darkly coloured which react ve1y quickly to environmental alterations. and possess fully developed wings. In some species wings However, the basic knowledge on habitat specificity, are reduced or can even be absent. The third antenna( necessary to construct such a predictive system, is still segment is usually spherical with a long, sideways or­ scarce, and in most groups even absent (LOBRY DE BRUYN iented arista. 1997, VAN STRAALEN & VERHOEF 1997). The family Sphaeroceridae is generally saprophagous. Sphaerocerid flies are tightly linked to the soil. This The larvae develop in a wide range of decaying organic can probably be attributed to the feeding habit and the matter such as dung (mainly from mammals), carcasses restricted locomot01y behaviour of the studied species. of animals, refuse heaps, grass cuttings, etc.
    [Show full text]
  • Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 37–46Checklist (2014) of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae... 37 doi: 10.3897/zookeys.441.7532 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland Jukka Salmela1, Lauri Paasivirta2, Gunnar M. Kvifte3 1 Metsähallitus, Natural Heritage Services, P.O. Box 8016, FI-96101 Rovaniemi, Finland 2 Ruuhikosken- katu 17 B 5, 24240 Salo, Finland 3 Department of Limnology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel-Oberzwehren, Germany Corresponding author: Jukka Salmela ([email protected]) Academic editor: J. Kahanpää | Received 17 March 2014 | Accepted 22 May 2014 | Published 19 September 2014 http://zoobank.org/87CA3FF8-F041-48E7-8981-40A10BACC998 Citation: Salmela J, Paasivirta L, Kvifte GM (2014) Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 37–46. doi: 10.3897/zookeys.441.7532 Abstract A checklist of the families Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) recorded from Finland is given. Four species, Dixella dyari Garret, 1924 (Dixidae), Threticus tridactilis (Kincaid, 1899), Panimerus albifacies (Tonnoir, 1919) and P. przhiboroi Wagner, 2005 (Psychodidae) are reported for the first time from Finland. Keywords Finland, Diptera, species list, biodiversity, faunistics Introduction Psychodidae or moth flies are an intermediately diverse family of nematocerous flies, comprising over 3000 species world-wide (Pape et al. 2011). Its taxonomy is still very unstable, and multiple conflicting classifications exist (Duckhouse 1987, Vaillant 1990, Ježek and van Harten 2005).
    [Show full text]
  • Volume 2, Chapter 12-19: Terrestrial Insects: Holometabola-Diptera
    Glime, J. M. 2017. Terrestrial Insects: Holometabola – Diptera Nematocera 2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 12-19-1 Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-19 TERRESTRIAL INSECTS: HOLOMETABOLA – DIPTERA NEMATOCERA 2 TABLE OF CONTENTS Cecidomyiidae – Gall Midges ........................................................................................................................ 12-19-2 Mycetophilidae – Fungus Gnats ..................................................................................................................... 12-19-3 Sciaridae – Dark-winged Fungus Gnats ......................................................................................................... 12-19-4 Ceratopogonidae – Biting Midges .................................................................................................................. 12-19-6 Chironomidae – Midges ................................................................................................................................. 12-19-9 Belgica .................................................................................................................................................. 12-19-14 Culicidae – Mosquitoes ................................................................................................................................ 12-19-15 Simuliidae – Blackflies
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Diptera: Nematocera) of the Piedmont of the Yungas Forests of Tucuma´N: Ecology and Distribution
    Ceratopogonidae (Diptera: Nematocera) of the piedmont of the Yungas forests of Tucuma´n: ecology and distribution Jose´ Manuel Direni Mancini1,2, Cecilia Adriana Veggiani-Aybar1, Ana Denise Fuenzalida1,3, Mercedes Sara Lizarralde de Grosso1 and Marı´a Gabriela Quintana1,2,3 1 Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuma´n, Instituto Superior de Entomologı´a “Dr. Abraham Willink”, San Miguel de Tucuma´n, Tucuma´n, Argentina 2 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, San Miguel de Tucuma´n, Tucuma´n, Argentina 3 Instituto Nacional de Medicina Tropical, Puerto Iguazu´ , Misiones, Argentina ABSTRACT Within the Ceratopogonidae family, many genera transmit numerous diseases to humans and animals, while others are important pollinators of tropical crops. In the Yungas ecoregion of Argentina, previous systematic and ecological research on Ceratopogonidae focused on Culicoides, since they are the main transmitters of mansonelliasis in northwestern Argentina; however, few studies included the genera Forcipomyia, Dasyhelea, Atrichopogon, Alluaudomyia, Echinohelea, and Bezzia. Therefore, the objective of this study was to determine the presence and abundance of Ceratopogonidae in this region, their association with meteorological variables, and their variation in areas disturbed by human activity. Monthly collection of specimens was performed from July 2008 to July 2009 using CDC miniature light traps deployed for two consecutive days. A total of 360 specimens were collected, being the most abundant Dasyhelea genus (48.06%) followed by Forcipomyia (26.94%) and Atrichopogon (13.61%). Bivariate analyses showed significant differences in the abundance of the genera at different sampling sites and climatic Submitted 15 July 2016 Accepted 4 October 2016 conditions, with the summer season and El Corralito site showing the greatest Published 17 November 2016 abundance of specimens.
    [Show full text]