Comprehensive Guide to Studying Wind Energy/Wildlife Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Comprehensive Guide to Studying Wind Energy/Wildlife Interactions Prepared for the National Wind Coordinating Collaborative June 2011 Acknowledgments This report was funded by the Wind and Water Power Program, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The NWCC Wildlife Workgroup thanks Patrick Gilman (U.S. Department of Energy), Karin Sinclair (National Renewable Energy Laboratory), and the Wildlife Workgroup Core Group and blind peer reviewers selected by NREL to review the document on behalf of the Workgroup. Abby Arnold (Kearns & West), Taylor Kennedy (RESOLVE, Inc.), and Lauren Flinn (RESOLVE, Inc.) facilitated the proposal selection process for preparation of the document and the NWCC Wildlife Workgroup document review process. Technical editing provided by Susan Savitt Schwartz, Editor Andrea Palochak, WEST, Inc., Associate Editor Cover design created by Jason Huerta, Bat Conservation International. Cover photo credits - Background: Wind turbines at the Foote Creek Rim Wind Project in Wyoming (photo by Ed Arnett, Bat Conservation International; Insets from right to left: Golden eagle (photo courtesy of iStockphoto LP © 2010), male greater sage grouse (photo courtesy of iStockphoto LP © 2010), hoary bat (photo by Merlin D. Tuttle, Bat Conservation International), mountain bluebird (photo courtesy of WEST Inc.), Rocky Mountain elk (photo courtesy of Puget Sound Energy). Prepared for: National Wind Coordinating Collaborative c/o RESOLVE 1255 23rd Street, Suite 275 Washington, DC 20037 www.nationalwind.org June 2011 COMPREHENSIVE GUIDE TO STUDYING WIND ENERGY/WILDLIFE INTERACTIONS Principal Authors Dale Strickland, WEST, Inc., Cheyenne, Wyoming Edward Arnett, Bat Conservation International, Inc., Austin, Texas Wallace Erickson, WEST, Inc., Cheyenne, Wyoming Douglas Johnson, U.S. Geological Survey, Saint Paul, Minnesota Gregory Johnson, WEST, Inc., Cheyenne, Wyoming Michael Morrison, Texas A&M University, College Station, Texas Jill Shaffer, U.S. Geological Survey, Jamestown, North Dakota William Warren-Hicks, EcoStat, Inc, Mebane, North Carolina Internal Review Team Wayne Walker, Wayne Walker Conservation Consulting, Round Top, Texas Rob Manes, The Nature Conservancy, Topeka, Kansas Michael Green, U.S. Fish & Wildlife Service, Portland, Oregon Tracey Librandi-Mumma, Pennsylvania Game Commission, Harrisburg Pennsylvania Citation: Strickland, M.D., E.B. Arnett, W.P. Erickson, D.H. Johnson, G.D. Johnson, M.L., Morrison, J.A. Shaffer, and W. Warren-Hicks. 2011. Comprehensive Guide to Studying Wind Energy/Wildlife Interactions. Prepared for the National Wind Coordinating Collaborative, Washington, D.C., USA. Prepared for the National Wind Coordinating Collaborative National Wind Coordinating Collaborative c/o RESOLVE 1255 23rd Street NW, Suite 275 Washington, D.C. 20037 http://www.nationalwind.org/ June 2011 PREFACE This document is a product of the National Wind Coordinating Collaborative (NWCC) Wildlife Workgroup. It is being released as a Resource Document for educational and informational purposes. The document has been reviewed and approved by an NWCC working group with relevant experience; but, by choice of the NWCC, has not been carried through the full NWCC consensus process. Publication does not presume that all Members have reviewed the content of the document. Since 1994, the NWCC has provided a neutral forum for a wide range of stakeholders to pursue the shared objective of developing environmentally, economically, and politically sustainable commercial markets for wind power in the United States. The NWCC forum provides opportunities for dialogue among lawmakers, public agencies and regulators, conservationists, and industry to discuss and develop unbiased and authoritative publically-available information on siting wind power. The mission of the NWCC Wildlife Workgroup is to identify, define, discuss, and through broad stakeholder involvement and collaboration address wind-wildlife and wind-habitat interaction issues to promote the shared objective of developing commercial markets for wind power in the United States. The NWCC published Studying Wind Energy/Bird Interactions: A Guidance Document in 1999. In the intervening 12 years much has been learned about the impacts of wind energy development on wildlife and their habitat. In consideration of this increase in knowledge, the NWCC published this expanded resource document. In addition to updating the methods and metrics available for studying wind energy and bird interactions, this resource document broadens its focus to include other wildlife, particularly bats, provides an abundance of case studies illustrating the application of methods and metrics, and introduces the concept of a decision framework. For more information on the NWCC, please visit www.nationalwind.org. TABLE OF CONTENTS CHAPTER 1: INTRODUCTION .................................................................................................. 1 INTRODUCTION ................................................................................................................... 2 PURPOSE AND SCOPE OF THIS DOCUMENT ................................................................... 3 HISTORICAL PERSPECTIVE ................................................................................................ 4 REVIEW OF WIND ENERGY FACILITY HAZARDS TO WILDLIFE ....................................... 7 Fatalities ............................................................................................................................. 7 Factors Influencing Fatalities .............................................................................................12 Population Effects .............................................................................................................15 Habitat ...............................................................................................................................16 ORGANIZATION OF THIS DOCUMENT ..............................................................................19 CHAPTER 2: PRELIMINARY SITE SCREENING AND SITE EVALUATION ............................21 PRELIMINARY SCREENING OF SITES ...............................................................................22 Problem Formulation .........................................................................................................22 Methods and Metrics .........................................................................................................23 Decision Process...............................................................................................................26 SITE EVALUATION ..............................................................................................................26 Problem Formulation .........................................................................................................28 Methods and Metrics .........................................................................................................29 DOCUMENTATION ..............................................................................................................32 ADEQUACY OF THE DATA ..............................................................................................32 CASE STUDY – A SITE CHARACTERIZATION STUDY ......................................................33 Collection of Available Site Mapping Information ...............................................................34 Evaluation of Land Cover, Characteristics and Uses .........................................................34 Identification of Officially Designated Tribal Lands.............................................................34 Biological Resource Evaluation .........................................................................................34 Pre-Field Evaluation ..........................................................................................................35 Site Visit ............................................................................................................................35 Agency Information Solicitation .........................................................................................36 Identification of Wetlands and Waters of the United States ...............................................36 Wind Power Guidelines and Permitting Requirements ......................................................36 Reporting ..........................................................................................................................36 Next Steps.........................................................................................................................37 SUMMARY ...........................................................................................................................37 DECISION PROCESS ..........................................................................................................37 CHAPTER 3: BASELINE STUDIES AND PREDICTIVE MODELS ............................................38 INTRODUCTION ..................................................................................................................39 PROBLEM FORMULATION ..................................................................................................39 ESTIMATING ABUNDANCE AND HABITAT USE ................................................................40 Point-Count Surveys .........................................................................................................40 Transect Surveys ..............................................................................................................43
Recommended publications
  • Elevated Opportunities for the South with Improved Turbines and Reduced Costs, Wind Farms the South Is a New Frontier for the Wind Industry
    Southern Alliance for Clean Energy October 2014 Advanced Wind Technology Expanded Potential Elevated Opportunities for the South With improved turbines and reduced costs, wind farms The South is a new frontier for the wind industry. now make economic sense in all states across the Advanced wind turbine technology and reduced costs South. Using currently available wind turbine have expanded the resource potential and have made technology, over 134,000 megawatts (MW) of wind wind energy economically feasible in more places in the potential exists within the region - about half as much Southern United States. of the total installed electric utility capacity. Megawatts of Onshore Wind Potential Improved Turbines The biggest changes in wind turbine technology over the past five years include taller turbines and longer blades. Just five years ago, wind turbines with a hub height of 80 meters (about 260 feet) and blade lengths of 40 meters (about 130 feet) were fairly standard. Taller turbines reach stronger, more consistent wind speeds. Hub heights of up to 140 meters (460 feet) are now available for wind farm developers. Longer blades are capable of capturing more wind, thus harnessing slower wind speeds. Blades are now available over 55 meters (180 feet) in length. Reduced Costs Wind energy is now one of the least expensive sources of new power generation in the country. Costs have Source: Adapted from National Renewable Energy Lab 2013 declined by 39% over the past decade for wind speed As can be seen in the chart above, all states in the areas averaging 6 meters per second. This reduced cost particularly applies to the Southeast, a region with South now contain substantial onshore wind energy typically lower wind speeds.
    [Show full text]
  • Public Opinion and the Environmental, Economic and Aesthetic Impacts of Offshore Wind
    Public Opinion and the Environmental, Economic and Aesthetic Impacts of Offshore Wind * Drew Busha,b , Porter Hoaglandb a Dept. of Geography and McGill School of Environment, McGill University, Montreal, QC, H3A0B9, Canada1 b Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA E-mail addresses: [email protected]; [email protected] * Corresponding Author for all stages: Drew Bush, (202)640-0333 1 Permanent/Present Address: Drew Bush, PO Box 756, 17 Becker Lane, New Castle, NH 03854 Bush D. & Hoagland, P. 1 Highlights • Early Cape Wind advocates and opposition use impacts to sway uninformed public. • “Extremist" arguments perpetuate uncertainties about impacts in public's mind. • Expert elicitation compares stakeholder understandings of impacts with scientists. • We find "non-extremist" stakeholder attitudes converge with scientists over time. • We hypothesize scientific education at outset may improve planning process. Abstract During ten-plus years of debate over the proposed Cape Wind facility off Cape Cod, Massachusetts, the public’s understanding of its environmental, economic, and visual impacts matured. Tradeoffs also have become apparent to scientists and decision-makers during two environmental impact statement reviews and other stakeholder processes. Our research aims to show how residents’ opinions changed during the debate over this first- of-its-kind project in relation to understandings of project impacts. Our methods included an examination of public opinion polls and the refereed literature that traces public attitudes and knowledge about Cape Wind. Next we conducted expert elicitations to compare trends with the level of understanding held by small groups of scientists and Cape Cod stakeholders.
    [Show full text]
  • Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File
    SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S. Department of Energy - Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File Q1'2015 Q1'2014 State MW CF CF Arizona 227 15.8% 21.0% California 5,182 13.2% 19.8% Colorado 2,299 36.4% 40.9% Hawaii 171 21.0% 18.3% Iowa 4,977 40.8% 44.4% Idaho 532 28.3% 42.0% Illinois 3,524 38.0% 42.3% Indiana 1,537 32.6% 29.8% Kansas 2,898 41.0% 46.5% Massachusetts 29 41.7% 52.4% Maryland 120 38.6% 37.6% Maine 401 40.1% 36.3% Michigan 1,374 37.9% 36.7% Minnesota 2,440 42.4% 45.5% Missouri 454 29.3% 35.5% Montana 605 46.4% 43.5% North Dakota 1,767 42.8% 49.8% Nebraska 518 49.4% 53.2% New Hampshire 147 36.7% 34.6% New Mexico 773 23.1% 40.8% Nevada 152 22.1% 22.0% New York 1,712 33.5% 32.8% Ohio 403 37.6% 41.7% Oklahoma 3,158 36.2% 45.1% Oregon 3,044 15.3% 23.7% Pennsylvania 1,278 39.2% 40.0% South Dakota 779 47.4% 50.4% Tennessee 29 22.2% 26.4% Texas 12,308 27.5% 37.7% Utah 306 16.5% 24.2% Vermont 109 39.1% 33.1% Washington 2,724 20.6% 29.5% Wisconsin 608 33.4% 38.7% West Virginia 583 37.8% 38.0% Wyoming 1,340 39.3% 52.2% Total 58,507 31.6% 37.7% SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S.
    [Show full text]
  • Planning for Wind Energy
    Planning for Wind Energy Suzanne Rynne, AICP , Larry Flowers, Eric Lantz, and Erica Heller, AICP , Editors American Planning Association Planning Advisory Service Report Number 566 Planning for Wind Energy is the result of a collaborative part- search intern at APA; Kirstin Kuenzi is a research intern at nership among the American Planning Association (APA), APA; Joe MacDonald, aicp, was program development se- the National Renewable Energy Laboratory (NREL), the nior associate at APA; Ann F. Dillemuth, aicp, is a research American Wind Energy Association (AWEA), and Clarion associate and co-editor of PAS Memo at APA. Associates. Funding was provided by the U.S. Department The authors thank the many other individuals who con- of Energy under award number DE-EE0000717, as part of tributed to or supported this project, particularly the plan- the 20% Wind by 2030: Overcoming the Challenges funding ners, elected officials, and other stakeholders from case- opportunity. study communities who participated in interviews, shared The report was developed under the auspices of the Green documents and images, and reviewed drafts of the case Communities Research Center, one of APA’s National studies. Special thanks also goes to the project partners Centers for Planning. The Center engages in research, policy, who reviewed the entire report and provided thoughtful outreach, and education that advance green communities edits and comments, as well as the scoping symposium through planning. For more information, visit www.plan- participants who worked with APA and project partners to ning.org/nationalcenters/green/index.htm. APA’s National develop the outline for the report: James Andrews, utilities Centers for Planning conduct policy-relevant research and specialist at the San Francisco Public Utilities Commission; education involving community health, natural and man- Jennifer Banks, offshore wind and siting specialist at AWEA; made hazards, and green communities.
    [Show full text]
  • Appendix D Avian Fatality Studies in the Western Ecosystems Technology, Inc
    Appendix D Avian Fatality Studies in the Western Ecosystems Technology, Inc. (WEST) Database This page intentionally left blank. Avian Fatality Studies in the Western Ecosystems Technology, Inc (West) Database Appendix D APPENDIX D. AVIAN FATALITY STUDIES IN THE WESTERN ECOSYSTEMS TECHNOLOGY, INC. (WEST) DATABASE Alite, CA (09-10) Chatfield et al. 2010 Alta Wind I, CA (11-12) Chatfield et al. 2012 Alta Wind I-V, CA (13-14) Chatfield et al. 2014 Alta Wind II-V, CA (11-12) Chatfield et al. 2012 Alta VIII, CA (12-13) Chatfield and Bay 2014 Barton I & II, IA (10-11) Derby et al. 2011a Barton Chapel, TX (09-10) WEST 2011 Beech Ridge, WV (12) Tidhar et al. 2013 Beech Ridge, WV (13) Young et al. 2014a Big Blue, MN (13) Fagen Engineering 2014 Big Blue, MN (14) Fagen Engineering 2015 Big Horn, WA (06-07) Kronner et al. 2008 Big Smile, OK (12-13) Derby et al. 2013b Biglow Canyon, OR (Phase I; 08) Jeffrey et al. 2009a Biglow Canyon, OR (Phase I; 09) Enk et al. 2010 Biglow Canyon, OR (Phase II; 09-10) Enk et al. 2011a Biglow Canyon, OR (Phase II; 10-11) Enk et al. 2012b Biglow Canyon, OR (Phase III; 10-11) Enk et al. 2012a Blue Sky Green Field, WI (08; 09) Gruver et al. 2009 Buffalo Gap I, TX (06) Tierney 2007 Buffalo Gap II, TX (07-08) Tierney 2009 Buffalo Mountain, TN (00-03) Nicholson et al. 2005 Buffalo Mountain, TN (05) Fiedler et al. 2007 Buffalo Ridge, MN (Phase I; 96) Johnson et al.
    [Show full text]
  • Wind Power Today, 2010, Wind and Water Power Program
    WIND AND WATER POWER PROGRAM Wind Power Today 2010 •• BUILDING•A•CLEAN• ENERGY •ECONOMY •• ADVANCING•WIND• TURBINE •TECHNOLOGY •• SUPPORTING•SYSTEMS•• INTERCONNECTION •• GROWING•A•LARGER• MARKET 2 WIND AND WATER POWER PROGRAM BUILDING•A•CLEAN•ENERGY•ECONOMY The mission of the U.S. Department of Energy Wind Program is to focus the passion, ingenuity, and diversity of the nation to enable rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. Built in 2009, the 63-megawatt Dry Lake Wind Power Project is Arizona’s first utility-scale wind power project. Building•a•Green•Economy• In 2009, more wind generation capacity was installed in the United States than in any previous year despite difficult economic conditions. The rapid expansion of the wind industry underscores the potential for wind energy to supply 20% of the nation’s electricity by the year 2030 as envisioned in the 2008 Department of Energy (DOE) report 20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply. Funding provided by DOE, the American Recovery and Reinvestment Act CONTENTS of 2009 (Recovery Act), and state and local initiatives have all contributed to the wind industry’s growth and are moving the BUILDING•A•CLEAN•ENERGY•ECONOMY• ........................2 nation toward achieving its energy goals. ADVANCING•LARGE•WIND•TURBINE•TECHNOLOGY• .....7 Wind energy is poised to make a major contribution to the President’s goal of doubling our nation’s electricity generation SMALL •AND•MID-SIZED•TURBINE•DEVELOPMENT• ...... 15 capacity from clean, renewable sources by 2012. The DOE Office of Energy Efficiency and Renewable Energy invests in clean SUPPORTING•GRID•INTERCONNECTION• ....................
    [Show full text]
  • Wind Energy Resource Guide: Common Questions and Concerns
    2009 WIND ENERGY RESOURCE GUIDE: COMMON QUESTIONS AND CONCERNS WIND ENERGY TASK FORCE OF LAKE COUNTY COMMUNITIES Devon Bank in Wheeling (LEED Gold and going Platinum) 12/21/2009 Page intentionally left blank 1 Table of Contents TYPES OF WIND ENERGY SYSTEMS ......................................................................................................... 5 Building Mounted Wind Energy System (BWES) .............................................................................. 5 Small Wind Energy System (SWES) ................................................................................................... 5 Large Wind Energy System (LWES) ................................................................................................... 6 The Horizontal Axis Wind Turbine .................................................................................................... 7 The Vertical Axis Wind Turbine ......................................................................................................... 7 Type of Wind Energy System Support Towers ................................................................................. 8 Monopole Towers ..................................................................................................................... 8 Tilt-Up Towers ........................................................................................................................... 8 Lattice Towers ..........................................................................................................................
    [Show full text]
  • National Wind Coordinating Committee C/O RESOLVE 1255 23Rd Street, Suite 275 Washington, DC 20037
    NuclearRegulatoryCommission Exhibit#-APL000019-00-BD01 Docket#-05200016 Identified:01/26/2012 Admitted:Withdrawn:01/26/2012 Rejected:Stricken: APL000019 10/21/2011 Permitting of Wind Energy Facilities A HANDBOOK REVISED 2002 Prepared by the NWCC Siting Subcommittee August 2002 Acknowledgments Principal Contributors Dick Anderson, California Energy Commission Dick Curry, Curry & Kerlinger, L.L.C. Ed DeMeo, Renewable Energy Consulting Services, Inc. Sam Enfield, Atlantic Renewable Energy Corporation Tom Gray, American Wind Energy Association Larry Hartman, Minnesota Environmental Quality Board Karin Sinclair, National Renewable Energy Laboratory Robert Therkelsen, California Energy Commission Steve Ugoretz, Wisconsin Department of Natural Resources NWCC Siting Subcommittee Contributors Don Bain, Jack Cadogan, Bill Fannucchi, Troy Gagliano, Bill Grant, David Herrick, Albert M. Manville, II, Lee Otteni, Brian Parsons, Heather Rhoads-Weaver, John G. White The NWCC Permitting Handbook authors would also like to acknowledge the contributions of those who worked on the first edition of the Permitting Handbook. Don Bain, Hap Boyd, Manny Castillo, Steve Corneli, Alan Davis, Sam Enfield, Walt George, Paul Gipe, Bill Grant, Judy Grau, Rob Harmon, Lauren Ike, Rick Kiester, Eric Knight, Ron Lehr, Don MacIntyre, Karen Matthews, Joe O’Hagen, Randy Swisher and Robert Therkelsen Handbook compilation, editing and review facilitation provided by Gabe Petlin (formerly with RESOLVE) and Susan Savitt Schwartz, Editor NWCC Logo and Handbook Design Leslie Dunlap, LB Stevens Advertising and Design Handbook Layout and Production Susan Sczepanski and Kathleen O’Dell, National Renewable Energy Laboratory The production of this document was supported, in whole or in part by the Midwest Research Institute, National Renewable Energy Laboratory under the Subcontract YAM-9-29210-01 and the Department of Energy under Prime Contract No.
    [Show full text]
  • National Wind Institute Civil Engineering Room 209 Reception to Follow
    Wednesday, April 22, 2015 TEXAS TECH UNIVERSITY 3:30 p.m. to 4:30 p.m. Civil Engineering Room 209 National Wind Institute Reception to follow The McDonald-Mehta Lecture Series Presents: National Wind Technology Center: 35 Years of Innovation Leading the Way to a Clean Energy Future Brian S. Smith Director National Wind Technology Center, National Renewable Energy Laboratory Abstract: The Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, NREL researchers have built unparalleled expertise in renewable energy technologies while supporting the nation’s vision that wind and water can provide clean, reliable, and cost-effective electricity. Just south of Boulder, Colorado, the NWTC is nestled at the base of the Rocky Mountain foothills. The 305-acre site experiences diverse and vigorous wind patterns – more than 100 miles per hour – making it an ideal setting for researching and testing the reliability and performance of wind turbines. The NWTC comprises the necessary infrastructure, highly experienced staff, and state-of-the-art equipment needed to provide its partners and stakeholders with a full spectrum of R&D capabilities to develop everything at one location – from small residential wind turbines and components to utility-scale land-based and offshore wind and water power technologies. Through 35 years of innovation, the NWTC is leading the way to increase the reliability and performance of wind technologies, greatly reducing the cost of wind energy and contributing to record- breaking industry growth. The center’s impact is industry-wide, ranging from the creation of award- winning components to helping partners develop the nation’s most commercially successful renewable energy technologies.
    [Show full text]
  • National Wind Wildlife Research Plan 2018-2020
    National Wind Wildlife Research Plan 2018-2020 For Release June 19, 2017 National Wind Wildlife Research Plan American Wind Wildlife Institute 1110 Vermont Ave NW, Suite 950 Washington, DC 20005 awwi.org For Release June 19, 2017 AWWI is a partnership of leaders in the wind industry, wildlife management agencies, and science and environmental organizations who collaborate on a shared mission: to facilitate timely and responsible development of wind energy while protecting wildlife and wildlife habitat. Find this document online at awwi.org/researchplan Acknowledgements This document was made possible by the generous support of AWWI’s Partners and Friends. Thank you to those who reviewed and provided insightful feedback during the development of this document. The information contained in this document does not necessarily reflect the opinions of AWWI’s Partners and Friends or those who served as reviewers. Suggested Citation Format American Wind Wildlife Institute (AWWI). 2017. National Wind Wildlife Research Plan. Washington, DC. Available at www.awwi.org. © 2017 American Wind Wildlife Institute. National Wind Wildlife Research Plan Table of Contents Executive Summary............................................................................................................................ i Introduction ..................................................................................................................................... 1 Avoiding and Minimizing Adverse Impacts – Current Knowledge ......................................................
    [Show full text]
  • Final Environmental Assessment (EA) Is Tiered to the Final Programmatic Environmental Impact Statement for the Eagle Rule Revision (PEIS; USFWS 2016B)
    U.S. Fish and Wildlife Service Final Environmental Assessment Biglow Canyon Wind Farm Eagle Permit Prepared by U.S. Fish and Wildlife Service Migratory Birds and Habitat Program 911 NE 11th Ave Portland, OR 97232 May 2020 i Biglow Wind Farm –Final EA Contents Abbreviations ................................................................................................................................ iv Chapter 1.0 Introduction ............................................................................................................. 1 1.1. Environmental Assessment Overview ............................................................................. 1 1.2. Project Description ........................................................................................................... 1 Chapter 2.0 Purpose and Need ................................................................................................... 6 2.1. Purposes and Need for Federal Action ............................................................................. 6 2.2. Decision to be Made ......................................................................................................... 6 2.3. Tiered EA ......................................................................................................................... 8 2.4. Authorities and Statutory and Regulatory Framework ..................................................... 8 2.5. Scope of Analysis ............................................................................................................
    [Show full text]
  • Offshore Wind Plant Electrical Systems
    Offshore Wind Plant Electrical Systems BOEM Offshore Renewable Energy Workshop Ian Baring-Gould July 29-30, 2014 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Major Offshore Wind Farm BOS Components • Foundations • Grounded (monopile, gravity, tripod, etc.) • Floating (ballast, mooring, buoyancy stabilizations, etc.) • Wind farm collector system • Inter-turbine Medium Voltage (MV) AC cables (typically 34.5 kV) • Substation platform with transformer and electrical equipment • Converter platform if High Voltage (HV) DC transmission is used •Transmission to shore • HVAC or HVDC submarine cable • Cable landing • HVAC or HVDC land cable • On-shore converter station for HVDC • Onshore substation/interconnection BOS = Balance of System or Balance of Station Source: NSW Submarine Power NATIONAL RENEWABLE ENERGY LABORATORY 2 Key Principles of Electrical Systems Maintaining a high level of power quality is driven by: • Regulation / Grid codes • Low voltage ride-through • Active frequency and power control Standard AC Transmission Voltage Ratings • Reactive power control Much depends on: • Configuration • Type and age of equipment • System integration and control Power System Basics: • Power: Power = Volts * Amps (VA) • Ohms Law: Volts = Amps * Resistance • Resistance = electrical resistance * ( length of run / area of cable) NATIONAL RENEWABLE ENERGY LABORATORY Balance of Station Land-based – Offshore Differences BOS technical and economic aspects of land based wind farms are well understood, but still need improvements. Optimization tools are available. – Some variations in BOS capital cost not related to site’s geographical characteristics are still present – In many cases, such variations can be tracked down to suboptimal design and/or specifications – Improvements and further standardization, bidding optimization can help – Need in larger mobile cranes, improved road infrastructure, etc.
    [Show full text]