ADH Gene Cluster Chromosome 4

Total Page:16

File Type:pdf, Size:1020Kb

ADH Gene Cluster Chromosome 4 BEER William Hogarth’s view of alcohol related harm Lane 1. Genetic effects increasing susceptibility to alcoholism (eg cadherins associated with ADHD, aldehyde dehydrogensase 2, alcohol dehydrogenase genes etc). 2. Genetic susceptibility to cognitive damage (Wernicke Korsakov Syndrome). Thiamine transporter gene (SLC19A3) mutations associated with WKS. 3. Primary genetic effects from depression genes on alcoholism. eg SYNE1, TACR1 bipolar genes associated with Alcohol Dependence Syndrome. Explore other affective disorder genes eg ODZ4. 4. Genetic effects on criminality and dis-social personality disorder and secondary effects on increasing susceptibility to the Alcohol Dependence Syndrome. 5. Genetic effect on alcoholic liver disease discovered from the PNPLA3 and ZNF699 genes. Family studies of alcoholism, Cotton 1979 35 30 25 20 Per cent affected 15 10 5 0 Fathers Mothers Brothers Half sibs Aunts/Uncles Spouses Cotton,N.S. (1979): The Familial Incidence of Alcoholism. J. Stud. Alcohol 40, 89-116. FAMILY STUDIES OF ALCOHOLISM All family studies show very high rates in the 1st and 2nd degree relatives of alcohol dependence syndrome probands (eg 30%) This is evidence of genetic and cultural factors because 1st degree relatives should have a higher incidence of alcoholism than 2nd degree relatives if only genetic factors predominated Depression and alcoholism: Population and Family studies • About 60% to 70% of alcoholics have DSMIII major depressive disorder • Family and twin studies show increased rate of depression in twins/relatives of alcoholics who were not alcoholic • But rates of depression were significantly higher in those with alcoholism compared to relatives who were not alcoholic • Conclusion: Depression is both primary and secondary to alcoholism ie there is a 2 way interaction. Same applies to anxiety and criminality. Comorbidity between bipolar disorder and alcoholism • Most studies show that about 30% of bipolar affective disorder subjects have loosely defined alcoholism (RDC and DSMIII criteria) Twin Method, Dividing Genetic and Environmental Components of Human Traits eg alcohol consumption • Heritability (G) G = H2 = 2 (rmz- rdz) • Common Environment (CE) CE = C2 = 2 rdz – rmz • Specific Environment (SE) SE = 1- H2-CE = 1-G=(2rdz – rmz ) Concordance can be pair wise or proband wise, proband wise is better statistically but not used much Pair wise concordance in twin studies of alcoholism 80 70 60 50 40 MZ DZ 30 20 10 0 Kaij 1960 Hrubec Gurling Svikis 1988 Gottesman Koskenvuo Pickens 1981 1981 1988 1984 1991 Heritability of alcohol consumption and alcoholism from twin studies Heritability is variable in the different twin studies. Where twins are ascertained through early age of onset male cases with criminality then heritability is high eg 80% in Kaij’s Swedish twin study but overall genetic effects account for about 50% of the variance in both men and women. Depression and alcoholism: Twins • One alcoholism twin study showed greater concordance for depression than for alcoholism (Gurling et al 1984) • ie Twin pairs were more concordant for depression than for alcoholism and alcoholic cotwins had a higher rate of depression than non alcoholic cotwins. ie there was a genetic effect on depression and also increased depression caused by alcoholism. • CONCLUSION In the Maudsley twin sample depression was both primary and secondary to alcoholism • FAMILY STUDIES ALSO SUPPORT THE CONCLUSION THAT ALCOHOLISM IS BOTH Primary and secondary to alcoholism. Adoption studies of alcoholism Authors Influence of adoptive Increased incidence of family demonstrated alcoholism among adoptees with alcoholic biological parents Roe et al 1944 Male & Female - No Cadoret & Gath 1978 Males-Yes Females - No Males – Yes Females- Yes Cadoret et al 1985 Cadoret et al 1987 Males - Yes Females - Yes Goodwin et al 1973 Males-No Males - Yes Goodwin et al 1974 Goodwin et al 1977 Females-No Females - No Bohman et al 1978 Males-Yes Females-No Sigvardsson et al 1996 Males-Yes Females-No Adoption studies • Original studies done in Denmark and Sweden. • Child adopted out. • Father alcoholic: 18% sons affected. • Father non-alcoholic: 5% sons affected. • Daughters less affected. CLONINGER’ S CLASSIFICATION OF “ALCOHOLISM” Derived from two adoption studies in Sweden which gave the same genetic and environmental effects TYPE I TYPE II ‘Milieu Limited’ ‘Male Limited’ DRINKING PATTERN Loss of control Inability to abstain SEX Male & Female Male HERITABILITY Parents mild or non-abusers Highly heritable CRIMINALITY No association Associated POST-NATAL Determines severity May influence severity ENVIRONMENT Frequency SEVERITY Usually mild Moderate/Severe AGE OF ONSET >25 years <25 years Swedish adoption studies Sigvardsson, S; Bohman, M.et al Replication of the Stockholm Adoption study of alcoholism: confirmatory cross-fostering analysis. Archives of general Psychiatry 53:681–687, 1996. Genes and environment for UNIPOLAR affective disorder from all twin studies G 72% CE <1% SE 29% Genes and environmental variance for BIPOLAR DISORDER from all twin studies combined Genes (G) 82% Family (CE) 1% Specific Environment (SE) 19% Bipolar and unipolar affective disorder genes associated with alcoholism Bipolar Gene Test p Source C12/Slynar Allelic Association 0.006 UCL TRPM2 Allelic Association 0.04 UCL SYNE1 Allelic Association 0.00005 Treutlein et al 2009 SYNE1 Allelic Association 0.02 Edenberg et al 2010 P2RX7 Allelic Association 0.002 WCPG abstract CHRM2 Allelic Association 0.003 Luo et al 2005 TACR1 (NK1R)* Allelic Association 0.009 Sharp et al 2013 GRM3 (mGlur3)* Allelic Association 0.08 Kandaswamy et al 2013 Spectrin repeat SYNE1/CPG2 region associated with BIPOLAR disorder CGP2 CPG2 is a brain-specific splice variant of SYNE1 Nonsynonymous SNP with strong association 21 and bipolar disorder George, D. T., J. Gilman, et al. (2008). "Neurokinin 1 receptor antagonism as a possible therapy for alcoholism." Science 319(5869): 1536-1539. Genetic Association, Mutation Screening, and Functional Analysis of a Kozak Sequence Variant in the Metabotropic Glutamate Receptor 3 Gene in Bipolar Disorder Radhika Kandaswamy, MSc, MPhil, PhD; Andrew McQuillin, PhD; Sally Sharp, PhD; Alessia Fiorentino, PhD; Adebayo Anjorin, MBchB, MSc, MRCPsych; Robert A. Blizard, MSc, MSc; David Curtis, MBBS, MD, PhD, MRCPsych; Hugh M. D. Gurling, MBBS, MD, MPhil, FRCPsych Jama Psychiatry, April 10th 2013 GRM3 ALSO SIGNIFICANTLY ASSOCIATED WITH THE ALCOHOL DEPENDENCE SYNDROME at UCL Effects of GRM2/3 agonists GRM2/3 agonists cause reductions in the evoked release of glutamate and concomitant reduction on post-synaptic glutamate-mediated excitations (Schoepp, 2001) Presynaptic effects GRM2/3 receptors not in the synaptic junction ie they a presynaptic (Cartmell and Schoepp, 2000), they may monitor glutamate escaping from junction and prevent pathological glutamate excitation Postsynaptic effects GRM2/3 hyperpolarize cells thus decreasing excitability (Tamaru et al, 2001) Neale, J. H., R. T. Olszewski, et al. (2011). "Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family." J Neurochem 118(4): 490-498. Chromosome 4 ADH gene cluster strongly associated with alcoholism in many studies UCL SNPs at ADH gene cluster associated with ADS Significance Odds SNP ID Nearest gene Function Position Average MPP* (P value) ratio rs3133155 ADH1B near 3' UTR 100227212 0.95 3.0E-04 1.2 rs28914794 ADH1B near 3' UTR 100227288 0.99 5.5E-04 0.52 rs28914793 ADH1B near 3' UTR 100227327 0.83 7.1E-03 0.93 rs1042026 ADH1B 3' UTR 100228466 0.80 8.8E-04 1.1 rs17033 ADH1B 3' UTR 100228945 0.99 5.1E-04 0.54 rs1789882 ADH1B synonymous 100235053 0.95 3.1E-04 1.2 rs1229984b ADH1B missense 100239319 0.97 2.7E-05 0.51 rs1159918 ADH1B near 5' UTR 100243009 0.93 2.0E-04 1.3 rs2070898 ADH1B near 5' UTR 100243297 0.79 1.1E-03 1.1 rs2070897 ADH1B near 5' UTR 100243310 0.94 2.9E-04 1.3 rs74871662 ADH1B near 5' UTR 100243445 0.93 3.0E-04 1.3 rs28913903 ADH1B near 5' UTR 100243480 0.65 7.6E-01 1.0 rs1229982 ADH1B near 5' UTR 100243932 0.87 3.5E-06 1.1 rs3811802 ADH1B near 5' UTR 100244221 0.84 2.1E-01 1.1 rs3811801 ADH1B near 5' UTR 100244319 0.58 5.5E-01 0.98 rs9307239 Intergenic unknown 100246937 0.73 2.3E-06 1.1 rs1789891b Intergenic unknown 100250419 0.95 5.6E-05 1.3 rs13117923 Intergenic unknown 100252198 0.78 1.0E-05 0.92 rs67631357 Intergenic unknown 100253563 0.78 8.4E-06 0.92 rs2298753 ADH1C 3' UTR 100257907 0.99 4.8E-04 1.3 rs1614972 ADH1C intronic 100258155 0.53 6.0E-05 0.90 rs698c ADH1C missense 100260789 0.98 1.5E-03 1.3 rs2241894 ADH1C synonymous 100266133 0.74 9.6E-03 0.89 rs1789915 ADH1C synonymous 100266371 0.97 4.9E-04 0.75 rs283413c ADH1C Nonsense 100268190 0.88 7.5E-04 1.1 rs13118443 ADH1C intronic 100269373 0.98 8.8E-05 0.77 rs34761493 ADH1C intronic 100273170 0.80 9.4E-05 0.94 TWO INDEPENDENT EFFECTS ON ALCOHOLISM FROM ADH1C GENE IN UCL alcoholism case control sample Table 1 Conditional testing of the independence of the effects between the ADH1C coding variants and the primary ADH SNPs genotyped Significance (P value) ADH 1C SNP Annotation rs1229984 rs1789891 rs698 ADH1C Ile350Val 0.013 0.19 rs1693482 ADH1C Arg272Gln 0.0012 0.06 rs283413 ADH1C Gly78STOP 0.25 0.0023 The likelihood ratio test P value is a measure of the independence of the allelic association signal, between the two SNPs under comparison. The greater the significance of the P value the more likely that the two SNPs under investigation are not contributing independently to the allelic association signal Starch Gel electrophoresis of ALDH2-2 mutation effect on substrate metabolism Propionaldehyde Benzaldehyde Developmental trajectory and environmental moderation of the effect of ALDH2 polymorphism on alcohol use. Irons DE, Iacono WG, Oetting WS, McGue M.
Recommended publications
  • Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
    ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database.
    [Show full text]
  • The Genetics of Alcohol Dependence: Advancing Towards Systems-Based Approaches
    Drug and Alcohol Dependence 125 (2012) 179–191 Contents lists available at SciVerse ScienceDirect Drug and Alcohol Dependence jo urnal homepage: www.elsevier.com/locate/drugalcdep Review The genetics of alcohol dependence: Advancing towards systems-based approaches a,b,c,∗ a,b,c a,d e f g a,b R.H.C. Palmer , J.E. McGeary , S. Francazio , B.J. Raphael , A.D. Lander , A.C. Heath , V.S. Knopik a Division of Behavioral Genetics, Department of Psychiatry at Rhode Island Hospital, United States b Department of Psychiatry and Human Behavior at the Warren Alpert Medical School of Brown University, United States c Department of Veterans Affairs, Providence, RI, United States d Providence College, Providence, United States e Department of Computer Science, and Center for Computational Molecular Biology, Brown University, United States f Department of Developmental and Cell Biology, University of California, Irvine, United States g Department of Psychiatry, Washington University School of Medicine, St. Louis, United States a r t i c l e i n f o a b s t r a c t Article history: Background: Personalized treatment for psychopathologies, in particular alcoholism, is highly dependent Received 7 February 2012 upon our ability to identify patterns of genetic and environmental effects that influence a person’s risk. Received in revised form 9 July 2012 Unfortunately, array-based whole genome investigations into heritable factors that explain why one Accepted 10 July 2012 person becomes dependent upon alcohol and another does not, have indicated that alcohol’s genetic Available online 31 July 2012 architecture is highly complex.
    [Show full text]
  • Computational Exploration of the Medium-Chain Dehydrogenase / Reductase Superfamily
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden COMPUTATIONAL EXPLORATION OF THE MEDIUM-CHAIN DEHYDROGENASE / REDUCTASE SUPERFAMILY Linus J. Östberg Stockholm 2017 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB 2017 ©Linus J. Östberg, 2017 ISBN 978-91-7676-650-7 COMPUTATIONAL EXPLORATION OF THE MEDIUM-CHAIN DEHYDROGENASE / REDUCTASE SUPERFAMILY THESIS FOR DOCTORAL DEGREE (Ph.D.) By Linus J. Östberg Principal Supervisor: Opponent: Prof. Jan-Olov Höög Prof. Jaume Farrés Karolinska Institutet Autonomous University of Barcelona Department of Medical Biochemistry and Department of Biochemistry and Biophysics Molecular Biology Co-supervisor: Examination Board: Prof. Bengt Persson Prof. Erik Lindahl Uppsala University Stockholm University Department of Cell and Molecular Biology Department of Biochemistry and Biophysics Assoc. Prof. Tanja Slotte Stockholm University Department of Ecology, Environment and Plant Sciences Prof. Elias Arnér Karolinska Institutet Department of Medical Biochemistry and Biophysics ABSTRACT The medium-chain dehydrogenase/reductase (MDR) superfamily is a protein family with more than 170,000 members across all phylogenetic branches. In humans there are 18 repre- sentatives. The entire MDR superfamily contains many protein families such as alcohol dehy- drogenase, which in mammals is in turn divided into six classes, class I–VI (ADH1–6). Most MDRs have enzymatical functions, catalysing the conversion of alcohols to aldehyde/ketones and vice versa, but the function of some members is still unknown. In the first project, a methodology for identifying and automating the classification of mammalian ADHs was developed using BLAST for identification and class-specific hidden Markov models were generated for identification.
    [Show full text]
  • ARTICLE Evidence of Positive Selection on a Class I ADH Locus
    ARTICLE Evidence of Positive Selection on a Class I ADH Locus Yi Han,* Sheng Gu,* Hiroki Oota,† Michael V. Osier,‡ Andrew J. Pakstis, William C. Speed, Judith R. Kidd, and Kenneth K. Kidd The alcohol dehydrogenase (ADH) family of enzymes catalyzes the reversible oxidation of alcohol to acetaldehyde. Seven ADH genes exist in a segment of ∼370 kb on 4q21. Products of the three class I ADH genes that share 95% sequence identity are believed to play the major role in the first step of ethanol metabolism. Because the common belief that selection has operated at the ADH1B*47His allele in East Asian populations lacks direct biological or statistical evidence, we used genomic data to test the hypothesis. Data consisted of 54 single-nucleotide polymorphisms (SNPs) across the ADH clusters in a global sampling of 42 populations. Both the Fst statistic and the long-range haplotype (LRH) test provided positive evidence of selection in several East Asian populations. The ADH1B Arg47His functional polymorphism has the highest Fst of the 54 SNPs in the ADH cluster, and it is significantly above the mean Fst of 382 presumably neutral sites tested on the same 42 population samples. The LRH test that uses cores including that site and extending on both sides also gives significant evidence of positive selection in some East Asian populations for a specific haplotype carrying the ADH1B*47His allele. Interestingly, this haplotype is present at a high frequency in only some East Asian populations, whereas the specific allele also exists in other East Asian populations and in the Near East and Europe but does not show evidence of selection with use of the LRH test.
    [Show full text]
  • For Poststroke Depression Based on Network Pharmacology and Molecular Docking
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 2126967, 14 pages https://doi.org/10.1155/2021/2126967 Research Article Exploring the Mechanism of Action of Herbal Medicine (Gan-Mai-Da-Zao Decoction) for Poststroke Depression Based on Network Pharmacology and Molecular Docking Zhicong Ding ,1 Fangfang Xu,1 Qidi Sun,2 Bin Li,1 Nengxing Liang,1 Junwei Chen,1 and Shangzhen Yu 1,3 1Jinan University, Guangzhou 510632, China 2Yangzhou University, Yangzhou 225009, China 3Wuyi Hospital of Traditional Chinese Medicine, Jiangmen 529000, China Correspondence should be addressed to Shangzhen Yu; [email protected] Received 19 May 2021; Accepted 14 August 2021; Published 23 August 2021 Academic Editor: Ghulam Ashraf Copyright © 2021 Zhicong Ding et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Poststroke depression (PSD) is the most common and serious neuropsychiatric complication occurring after ce- rebrovascular accidents, seriously endangering human health while also imposing a heavy burden on society. Nevertheless, it is difficult to control disease progression. Gan-Mai-Da-Zao Decoction (GMDZD) is effective for PSD, but its mechanism of action in PSD is unknown. In this study, we explored the mechanism of action of GMDZD in PSD treatment using network pharmacology and molecular docking. Material and methods. We obtained the active components of all drugs and their targets from the public database TCMSP and published articles. -en, we collected PSD-related targets from the GeneCards and OMIM databases.
    [Show full text]
  • Aldh2, Adh1b, and Adh1c Genotypes in Asians: A
    FOCUS ON SPECIAL POPULATIONS ALDH2, ADH1B, AND ADH1C GENOTYPES data from over 4,500 alcohol-dependent and control sub­ IN ASIANS: A LITERATURE REVIEW jects collected between 1979 and 2004 found possession of one variant ALDH2*2 allele was associated with a five­ fold reduction in alcohol is dependence and possession of Mimy Y. Eng, Ph.D.; Susan E. Luczak, Ph.D.; two ALDH2*2 alleles was associated with a nine-fold and Tamara L. Wall, Ph.D. reduction (Luczak et al. 2006).3 In Asians with no ALDH2*2 alleles, possession of one variant ADH1B*2 Variants of three genes encoding alcohol-metabolizing allele was associated with a four-fold reduction in alcohol enzymes, the aldehyde dehydrogenase gene ALDH2 and the dependence and possession of two ADH1B*2 alleles was alcohol dehydrogenase genes ADH1B and ADH1C, have associated with a five-fold reduction (Luczak et al. 2006). been associated with reduced rates of alcohol dependence. ADH1C*1 also has been related to protection against The genotype prevalence of these genes varies in general alcohol dependence, but this association has been attribut­ ed to the gene being in close proximity to the samples of different Asian ethnic groups. The ALDH2*2 ADH1C ADH1B gene on the chromosome so that the genotypes allele appears to be most prevalent in Chinese-American, are correlated (Osier et al. 1999). Han Chinese and Taiwanese, Japanese, and Korean samples. Determining how frequently certain genotypes occur Much lower rates have been reported in Thais, Filipinos, in different populations is useful for behavioral genetics Indians, and Chinese and Taiwanese aborigines.
    [Show full text]
  • Research on the Mechanism of Wuwei Yuganzi San in the Treatment of Coronary Heart Disease Based on Network Pharmacology
    Research on the Mechanism of Wuwei Yuganzi San in the Treatment of Coronary Heart Disease Based on Network Pharmacology Qunhui Zhang Qinghai University Medical College https://orcid.org/0000-0002-4021-5669 Yimei Li Xizang Minzu University Yang Guo Qinghai University Medical College Qiqin Lu Qinghai University Guoying Zhang Qinghai University Jing Ma Qinghai University Dejun Zhang ( [email protected] ) Medical College of Qinghai University https://orcid.org/0000-0002-1436-1910 Research Keywords: Network Pharmacology, CHD, WYS, Targets, Mechanism Posted Date: April 1st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-360519/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Coronary heart disease (CHD) is a chronic cardiovascular disease across the world, which poses numerous threats to mankind. Wuwei Yuganzi San (WYS) is a famous traditional Tibetan medicine prescription. It has been conrmed effective in the treatment of CHD, but its specic mechanism remains still unclear. Objective: To elucidate the main pharmacological action of WYS in treating CHD and investigate the underlying multiple mechanisms of its multi-ingredient-multi-target by network pharmacology. Methods: Firstly, active ingredients of WYS and connected targets of ve herbs were retrieved by using traditional Chinese medicine systems pharmacology (TCMSP) and screening literature. Then, genome explanation databases (OMIM and GeneCards) were used to acquire targets related to CHD. The protein- protein interaction (PPI) network was built using the mutual targets ltering genes through protein interaction. Next, a network diagram could be established with the help of Cytoscape 3.8.2.
    [Show full text]
  • Comparative Genomics Reveals Convergent Evolution Between the Bamboo-Eating Giant and Red Pandas
    Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas Yibo Hua,1,QiWua,1, Shuai Maa,b,1, Tianxiao Maa,b,1, Lei Shana, Xiao Wanga,b, Yonggang Niea, Zemin Ningc, Li Yana, Yunfang Xiud, and Fuwen Weia,b,2 aKey Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; bUniversity of Chinese Academy of Sciences, Beijing 100049, China; cWellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; and dStraits (Fuzhou) Giant Panda Research and Exchange Center, Fuzhou 350001, China Edited by Steven M. Phelps, University of Texas at Austin, Austin, TX, and accepted by Editorial Board Member Joan E. Strassmann December 15, 2016 (received for review August 19, 2016) Phenotypic convergence between distantly related taxa often mirrors genetic base” (13), and Stephen J. Gould later featured the new adaptation to similar selective pressures and may be driven by genetic digit in the title of his popular 1980 book, “The Panda’sThumb” convergence. The giant panda (Ailuropoda melanoleuca)andred (14). In the red panda, the pseudothumb also facilitates arboreal panda (Ailurus fulgens) belong to different families in the order Car- locomotion (15). Despite this widespread interest, its genetic basis nivora, but both have evolved a specialized bamboo diet and adaptive has remained elusive. These shared characteristics between giant pseudothumb, representing a classic model of convergent evolution. and red pandas represent a classic model of convergent evolution However, the genetic bases of these morphological and physiological under presumably the same environmental pressures. convergences remain unknown.
    [Show full text]
  • The International Mouse Phenotyping Consortium (IMPC): a Functional
    The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation × the IMPC consortium Violeta Muñoz-Fuentes, Pilar Cacheiro, Terrence Meehan, Juan Antonio Aguilar-Pimentel, Steve Brown, Ann Flenniken, Paul Flicek, Antonella Galli, Hamed Haseli Mashhadi, Martin Hrabě de Angelis, et al. To cite this version: Violeta Muñoz-Fuentes, Pilar Cacheiro, Terrence Meehan, Juan Antonio Aguilar-Pimentel, Steve Brown, et al.. The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation × the IMPC consortium. Conservation Genet- ics, Springer Verlag, 2018, 3 (4), pp.995-1005. 10.1007/s10592-018-1072-9. hal-02361601 HAL Id: hal-02361601 https://hal.archives-ouvertes.fr/hal-02361601 Submitted on 13 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Conservation Genetics (2018) 19:995–1005 https://doi.org/10.1007/s10592-018-1072-9 RESEARCH ARTICLE The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation Violeta Muñoz‑Fuentes1 · Pilar Cacheiro2 · Terrence F. Meehan1 · Juan Antonio Aguilar‑Pimentel3 · Steve D. M. Brown4 · Ann M. Flenniken5,6 · Paul Flicek1 · Antonella Galli7 · Hamed Haseli Mashhadi1 · Martin Hrabě de Angelis3,8,9 · Jong Kyoung Kim10 · K.
    [Show full text]
  • Discovering Pharmacogenomic Variants and Pathways with the Epigenome and Spatial Genome
    The Pharmacoepigenomics Informatics Pipeline and H-GREEN Hi-C Compiler: Discovering Pharmacogenomic Variants and Pathways with the Epigenome and Spatial Genome by Ari Lawrence Allyn-Feuer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in the University of Michigan 2018 Doctoral Committee: Professor Brian D. Athey, Chair Assistant Professor Alan P. Boyle Professor Ivo D. Dinov Research Professor Gerald A. Higgins Professor Wolfgang Sadee, The Ohio State University Ari Lawrence Allyn-Feuer [email protected] ORCID iD: 0000-0002-8379-2765 © Ari Allyn-Feuer 2018 Dedication In the epilogue of Altneuland, Theodor Herzl famously wrote: “Dreams are not so different from deeds as some may think. All the deeds of men are dreams at first, and become dreams in the end.” Medical advances undergo a similar progression, from invisible to visible and back. Before they are accomplished, advances in the physician’s art are illegible: no one differentiates from the rest the suffering and death which could be alleviated with methods which do not yet exist. Unavoidable ills have none of the moral force of avoidable ones. Then, for a brief period, beginning shortly before it is deployed in mainstream practice, and slowly concluding over the generation after it becomes widespread, an advance is visible. People see the improvements and celebrate them. Then, subsequently, for the rest of history, if we are lucky, such an advance is more invisible than it was before it was invented. No one tallies the children who do not get polio, the firm ground that used to be a malarial swamp, or the quiet fact of sanitation.
    [Show full text]
  • Formaldehyde Acetaldehyde
    Preventing hereditary cancers caused by op- portunistic carcinogens Bernard Friedenson, Ph.D. Department of Biochemistry and Molecular Genetics College of Medicine 900 S Ashland Ave University of Illinois Chicago, Chicago, IL 60607 Nature Precedings : doi:10.1038/npre.2011.6668.1 Posted 5 Dec 2011 Supported by a grant from the University of Illinois Chicago Running title: Hereditary cancer prevention -1- Objectives Previous studies reported inherited BRCA1/2 deficits can cause cancer by impairing normal protective responses. Opportunistic carcinogens can exploit these deficits by caus- ing chronic inflammation, constant cell death and replacement in a mutagenic environment, DNA crosslinking or double strand breaks. Some of the resulting cancers may be prevented if opportunistic carcinogens are identified. Methods The literature was systematically searched for carcinogens capable of exploiting defi- cits in BRCA1/2 pathways. Search criteria were common exposure, available information, required BRCA1/2 pathway repairs, increased risks for any cancer, and effects on stem cells. Results Formaldehyde and acetaldehyde are closely related carcinogens and common pollut- ants that seem everywhere. Alcohol metabolism also produces acetaldehyde. High levels of either carcinogen overwhelm normal detoxification systems, cause inflammation, inhibit DNA repair and produce DNA cross links as critical carcinogenic lesions. Searching model system studies revealed both carcinogens activate stem cells, BRCA1/2 pathways and con- nected BRCA1/2 pathways to myeloid leukemia. For example, the BRCA1-BARD1 complex is required for proper nucleophosmin functions. Nucleophosmin prevents a major subset of acute myeloid leukemia (AML). Next, these concepts were independently tested against risks for myeloid leukemia. Epidemiologic results showed that BRCA2 gene defects inherited on both chromosomes increased risks so dramatically that AML occurs in most children.
    [Show full text]
  • A Rare Truncating Mutation in ADH1C (G78stop) Shows Significant Association with Parkinson Disease in a Large International Sample
    ORIGINAL CONTRIBUTION A Rare Truncating Mutation in ADH1C (G78Stop) Shows Significant Association With Parkinson Disease in a Large International Sample Silvia Buervenich, PhD; Andrea Carmine, PhD; Dagmar Galter, PhD; Haydeh N. Shahabi, MS; Bo Johnels, MD, PhD; Björn Holmberg, MD, PhD; Jarl Ahlberg, MD; Hans Nissbrandt, MD, PhD; Johanna Eerola, MD; Olli Hellström, MD; Pentti J. Tienari, MD, PhD; Tohru Matsuura, MD; Tetsuo Ashizawa, MD; Ullrich Wüllner, MD; Thomas Klockgether, MD; Alexander Zimprich, MD; Thomas Gasser, MD; Melissa Hanson, MS; Shamaila Waseem, MD; Andrew Singleton, PhD; Francis J. McMahon, MD; Maria Anvret, PhD; Olof Sydow, MD, PhD; Lars Olson, PhD Background: Alcohol dehydrogenases (ADHs) may be 1076 PD patients of European ancestry and 940 involved in the pathogenesis of neurodegenerative dis- matched controls. orders because of their multiple roles in detoxification pathways and retinoic acid synthesis. In a previous Results: The previously identified association with an ADH study, significant association of an ADH class IV allele class IV allele remained significant (PϽ.02) in the ex- with Parkinson disease (PD) was found in a Swedish tended Swedish study. Furthermore, in the international sample. collaboration, the G78stop mutation in ADH1C was found in 22 (2.0%) of the PD patients but only in 6 controls (0.6%). ␹2 Patients: The previously associated single-nucleotide This association was statistically significant ( 1=7.5; 2-sided polymorphism plus 12 further polymorphisms in the P=.007; odds ratio, 3.25 [95% confidence interval, 1.31- ADH cluster on human chromosome 4q23 were 8.05]). In addition, the G78stop mutation was identified screened for association in an extension of the original in 4 (10.0%) of 40 Caucasian index cases with PD with sample that now included 123 Swedish PD patients and mainly hereditary forms of the disorder.
    [Show full text]