Proelectrophile-Nucleophile Adduct Formation and Permanganate Oxidation of Alkenes: Use of Model Compounds to Probe Complex Reaction Pathways
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
Exactly As Received Mic 61-929 MERRYMAN, Earl L Ew Is. THE
This dissertation has been microfilmed exactly as received Mic 61-929 MERRYMAN, Earl Lewis. THE ISOTOPIC EXCHANGE REACTION BETWEEN Mn AND MnO” . 4 The Ohio State University, Ph.D, 1960 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE ISOTOPIC EXCHANGE REACTION BETTAIEEN Mn** AND ItaO ^ DISSERTATION Presented in P&rtial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of The Ohio S tate U niversity By Earl Lewis Ferryman, B.Sc* The Ohio State University I960 Approved by Department oy Chenletry 1C mnriEDGiBiT The author wlshea to e:qpr«as his approoiation to Profoaaor Alfred B. Garrett for hie superrieion and enocur- agement during the oouree of this research* and for his sincere interest in mj eelfare both as an undergraduate and graduate student at Ohio State University. I also wish to thank the Ohio State University Cheidstry Depsurtnent for the Assistant ships granted me during the 1 9 5 6* 7 "^ aeademlo years. The author also gratefully acknowledges the Fellowships granted me by the American Cyansuald Company during the 1959*60 academic year and by the National Science Foundation during the Summer Q u a rte r of I960* i i TABI£ OP CONTEHTS PAOE INTRODUCTION ............................................................................................................... 1 Àpplloationa of Radloaotirlty in Chomiatry 1 The Problem and Its H latory ....................................................... .. 1 The Problem Reeulting from Early Work 5 Statement of the Problem .......................... -
Electrochemical Control of Organic Reactions Involving Phase Transfer
University College London Department of Chemistry Electrochemical Control of Organic Reactions Involving Phase Transfer by Camilla Forssten Ph.D. 2002 ProQuest Number: U643499 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643499 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Phase transfer catalysis reactions are reactions where the reactants are soluble in different solvents. The phase transfer catalyst facilitates the transfer of a reactant from one phase to another, hence enabling the reaction. This can be explained electrochemically: By partitioning between the phases, the catalyst establishes a potential difference across the interface, which drives the transfer of reagent into the other phase (usually an inorganic anion is being transferred into the organic phase), or controls the reaction at the interface. A similar potential difference can also be applied with electrochemical instrumentation and the reactions can be investigated in electrochemical systems. Electrochemistry at ITIES (Interface between Two Immiscible Electrolyte Solutions) provides a fast, convenient and simple way of investigating the electrochemistry of a synthetic phase transfer reaction. The organic syntheses were also carried out to confirm the electrochemical results. -
CHM 4 Naming Compounds Extra Practice: Version C When You Are
CHM 4 Naming Compounds Extra Practice: Version C When you are done, grade yourself using the answer key on the next page. To be well prepared for Exam #1, you should be scoring ≥85% on your naming practice. Converting from name to formula 1) What is the formula for sulfurous acid? A) H3SO3(aq) B) H2S(aq) C) H2SO3(aq) D) H3SO4(aq) E) H2SO4(aq) 2) What is the formula for rubidium arsenate? A) Rb2AsO4 B) Rb2AsO3 C) Rb3AsO3 D) Rb3AsO4 E) RbAsO3 3) What is the formula for aluminum sulfide? A) Al(SO3)2 B) Al(SO2)2 C) Al3S2 D) AlSO2 E) Al2S3 4) What is the formula for oxalic acid? A) H2C4O2 (aq) B) HC2H2O3 (aq) C) H2C2O4 (aq) D) HC2H3O2 (aq) E) HC2O4 (aq) 5) What is the formula for zinc borate? A) ZnBO4 B) Zn3(BO3)2 C) Zn(BO4)2 D) Zn3BO3 E) Zn2BO3 6) What is the formula for tin(II) chromate? A) SnCrO4 B) Sn2Cr2O7 C) SnCr2O4 D) Sn2CrO4 E) SnCr2O7 7) What is the formula for hydrobromic acid? A) H2BrO3 (aq) B) HBrO (aq) C) HBrO2 (aq) D) HBrO3 (aq) E) HBr (aq) 8) What is the formula for tetraphosphorous pentachloride? A) P3Cl6 B) P3(ClO)6 C) P4Cl5 D) P6(ClO)3 E) P3(ClO)5 9) What is the formula for barium dihydrogen phosphate? A) BaH2PO4 B) Ba2(HPO4)3 C) Ba(HPO3)2 D) Ba3(HPO3)2 E) Ba(H2PO4)2 10) What is the formula for potassium hydroxide? A) KOH B) K3O2 C) K3OH D) K2OH E) K2O2 Converting from formula to name 11) What is the name for LiHCO3? A) lithium carbonate B) lithium hydrogen carbonate C) lithium hydrocarbide D) lithium monohydrogen monocarbide E) lithium hydrocarbonic acid 12) What is the name for HIO(aq)? A) hydroiodic acid B) periodic acid -
Effects of Metabolic Inhibitors on the Translocation of Auxins
EFFECTS OF METABOLIC INHIBITORS ON THE TRANSLOCATION OF AUXINS By DAMELIS DIAZ DE CEQUEA q Licenciado in Biology Universidad of Oriente Cumana, Venezuela 1976 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1986 -rkto~~~ I 1:{ (; 0 5'/Je Cop " EFFECTS OF METABOLIC INHIBITORS ON THE TRANSLOCATION OF AUXINS Thesis Approved: 1251232 ~ ii ACKNOWLEDGMENTS I wish to express my most sincere gratitude to Dr. Eddie Basler for his guidance, time and training during the course of this research. I wish to thank Dr. Glenn W. Todd and Dr. Becky Johnson for being members of my graduate committee. I also want to thank Jean Pittman Winters, Trina Wheless, and Roberto Machado for their valuable help received during experiment preparations, and Bobby Winters for his time dedicated to preparing some of the computer programs. Special acknowledgement is due to my husband Hernan, my son Hernan Alejandro, and my family for their constant love and support during my graduate career, without them I would not have been able to achieve this goal. I want to express my gratitude to Dr. John Vitek, Assistant Dean of the Graduate Collage, and Dr. Glenn Todd, Botany Department Head, for giving me the opportunity to study in this University. Finally, I want to recognize the financial support received from Universidad de Oriente Cumana, Venezuela during my time in the U.S.A. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. • . • • . • 1 II. MATERIALS AND METHODS....................................... 8 III. RESULTS ..•....•.................................•..........• 11 Comparison of the Effect of DCCD and1RIDS on the Tray~location of 2,4,5-T-1- C and IAA -1- C. -
(III)-Catalysed Oxidation of Atenolol by Alkaline Permanganate (Sto
J. Chem. Sci., Vol. 117, No. 1, January 2005, pp. 33–42. © Indian Academy of Sciences. Kinetic, mechanistic and spectral investigation of ruthenium (III)- catalysed oxidation of atenolol by alkaline permanganate (stopped-flow technique) RAHAMATALLA M MULLA, GURUBASAVARAJ C HIREMATH and SHARANAPPA T NANDIBEWOOR* PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India e-mail: [email protected] MS received 10 October 2003; revised 26 December 2003 Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0×30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is 2+ understood as [Ru(H2O)5OH] . The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and dis- cussed and thermodynamic quantities are also calculated. Keywords. Kinetics; permanganate; stopped-flow technique; oxidation of atenolol; ruthenium(III) catalysis. 1. Introduction (scheme 1) and one in which a hypomanganate is formed in a two-electron step followed by rapid re- Permanganates ions oxidize a greater variety of sub- action12 (scheme 2). -
Landscaping Near Black Walnut Trees
Selecting juglone-tolerant plants Landscaping Near Black Walnut Trees Black walnut trees (Juglans nigra) can be very attractive in the home landscape when grown as shade trees, reaching a potential height of 100 feet. The walnuts they produce are a food source for squirrels, other wildlife and people as well. However, whether a black walnut tree already exists on your property or you are considering planting one, be aware that black walnuts produce juglone. This is a natural but toxic chemical they produce to reduce competition for resources from other plants. This natural self-defense mechanism can be harmful to nearby plants causing “walnut wilt.” Having a walnut tree in your landscape, however, certainly does not mean the landscape will be barren. Not all plants are sensitive to juglone. Many trees, vines, shrubs, ground covers, annuals and perennials will grow and even thrive in close proximity to a walnut tree. Production and Effect of Juglone Toxicity Juglone, which occurs in all parts of the black walnut tree, can affect other plants by several means: Stems Through root contact Leaves Through leakage or decay in the soil Through falling and decaying leaves When rain leaches and drips juglone from leaves Nuts and hulls and branches onto plants below. Juglone is most concentrated in the buds, nut hulls and All parts of the black walnut tree produce roots and, to a lesser degree, in leaves and stems. Plants toxic juglone to varying degrees. located beneath the canopy of walnut trees are most at risk. In general, the toxic zone around a mature walnut tree is within 50 to 60 feet of the trunk, but can extend to 80 feet. -
Kinetics and Mechanistic Study of the Ruthenium(III) Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped Flow Technique)
CODEN ECJHAO E-Journal of Chemistry http://www.e-journals.net Vol. 2, No. 1, pp 91 -100, January 2005 Kinetics and Mechanistic Study of the Ruthenium(III) Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped flow technique) R.S.SHETTAR, M.I.HIREMATH and S.T. NANDIBEWOOR* P.G. Department of Studies in Chemistry, Karnatak University, Dharwad-580003, India. Received 7 October 2004; Accepted 14 December 2004 Abstract The kinetics of ruthenium(III) catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline). The reaction shows first order dependence on [permanganate] and [ruthenium(III)] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed. Key words: Kinetics; Potassium permanganate Ruthenium; Oxidation; L-proline Introduction Potassium permanganate is widely used as an oxidising agent in synthetic as well as in analytical chemistry and also as a disinfectant. The reactions with permanganate are governed by pH of the medium. Among six oxidation states of manganese from 2+ to 7+, permanganate, Mn(VII) is the most potent oxidation state in acid as well as in alkaline medium. -
Black Walnut Toxicity
General Horticulture • HO-193-W Department of Horticulture Purdue University Cooperative Extension Service • West Lafayette, IN BLACK WALNUT TOXICITY Michael N. Dana and B. Rosie Lerner Black walnut (Juglans nigra L.) is a valuable hardwood to be a respiration inhibitor which deprives sensitive lumber tree and Indiana native. In the home landscape, plants of needed energy for metabolic activity. black walnut is grown as a shade tree and, occasionally, for its edible nuts. While many plants grow well in The largest concentrations of juglone and hydrojuglone proximity to black walnut, there are certain plant species (converted to juglone by sensitive plants) occur in the whose growth is hindered by this tree. The type of walnut’s buds, nut hulls, and roots. However, leaves and relationship between plants in which one produces a stems do contain a smaller quantity. Juglone is only substance which affects the growth of another is know poorly soluble in water and thus does not move very far as “allelopathy.” in the soil. Awareness of black walnut toxicity dates back at least to Since small amounts of juglone are released by live Roman times, when Pliny noted a poisoning effect of roots, particularly juglone-sensitive plants may show walnut trees on “all” plants. More recent research has toxicity symptoms anywhere within the area of root determined the specific chemical involved and its mode growth of a black walnut tree. However, greater quanti of action. Many plants have been classified through ties of juglone are generally present in the area immedi observation as either sensitive or tolerant to black ately under the canopy of a black walnut tree, due to walnuts. -
Oxidation Kinetics
FINAL REPORT Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics SERDP Project ER-1289 December 2007 Paul Tratnyek Oregon Health & Science University Jamie Powell Oregon Health & Science University Rachel Waldemer Oregon Health & Science University Distribution Statement A: Approved for Public Release, Distribution is Unlimited This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. IMPROVED UNDERSTANDING OF IN SITU CHEMICAL OXIDATION Technical Objective I: Contaminant Oxidation Kinetics SERDP Project Number ER-1289 Principal Investigator: Paul G. Tratnyek Graduate Students and Staff: Rachel Waldemer and Jamie Powell Department of Environmental and Biomolecular Systems Oregon Health & Science University 20000 NW Walker Rd., Beaverton, OR 97006-8921 *Email: [email protected] Web: http://cgr.ebs.ogi.edu Phone: 503-748-1023, Fax: 503-748-1273 FINAL REPORT—OBJECTIVE I May 2009 Revision 1 TABLE OF CONTENTS Page 1. Acknowledgements ..................................................................................................... -
Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins
J Chem Ecol DOI 10.1007/s10886-013-0240-0 REVIEW ARTICLE Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins Stephen O. Duke & Joanna Bajsa & Zhiqiang Pan Received: 31 October 2012 /Revised: 20 December 2012 /Accepted: 31 December 2012 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract For a little over a decade, omics methods (tran- Introduction scriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of Understanding the modes of action of natural compounds as both synthetic and natural phytotoxins. For mode of action toxicants is important for at least two reasons. From an eco- discovery, the strategy for each of these approaches is to logical and evolutionary standpoint, knowing the mode of generate an omics profile for phytotoxins with known mo- action of such compounds is critical to understanding the lecular targets and to compare this library of responses to the function of the compound in nature. For example, the high responses of compounds with unknown modes of action. activity of phytotoxins from plant pathogens on specific mo- Using more than one omics approach enhances the proba- lecular targets found in green plants, but not in fungi, provides bility of success. Generally, compounds with the same mode strong evidence that the compounds have evolved as virulence of action generate similar responses with a particular omics factors for the pathogens (Duke and Dayan, 2011). From a method. Stress and detoxification responses to phytotoxins more practical standpoint, natural compounds often have been can be much clearer than effects directly related to the target the source of pesticides with new modes of action (Dayan et site. -
Induction of Oxidative Stress and Mitochondrial Dysfunction by Juglone Affects the Development of Bovine Oocytes
International Journal of Molecular Sciences Article Induction of Oxidative Stress and Mitochondrial Dysfunction by Juglone Affects the Development of Bovine Oocytes Ahmed Atef Mesalam 1,2,†, Marwa El-Sheikh 1,3,†, Myeong-Don Joo 1, Atif Ali Khan Khalil 4 , Ayman Mesalam 5 , Mi-Jeong Ahn 6 and Il-Keun Kong 1,7,8,* 1 Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; [email protected] (A.A.M.); [email protected] (M.E.-S.); [email protected] (M.-D.J.) 2 Department of Therapeutic Chemistry, Division of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Dokki, Cairo 12622, Egypt 3 Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Dokki, Cairo 12622, Egypt 4 Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; [email protected] 5 Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; [email protected] 6 College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; [email protected] 7 Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea 8 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Juglone, a major naphthalenedione component of walnut trees, has long been used in traditional medicine as an antimicrobial and antitumor agent. Nonetheless, its impact on oocyte and preimplantation embryo development has not been entirely clarified. Using the bovine model, we sought to elucidate the impact of juglone treatment during the in vitro maturation (IVM) of oocytes Citation: Mesalam, A.A.; El-Sheikh, on their maturation and development of embryos.