Recent Advances in Understanding the Molecular Genetic Basis of Mitochondrial Disease

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in Understanding the Molecular Genetic Basis of Mitochondrial Disease Received: 21 January 2019 Revised: 3 April 2019 Accepted: 24 April 2019 DOI: 10.1002/jimd.12104 REVIEW ARTICLE Recent advances in understanding the molecular genetic basis of mitochondrial disease Kyle Thompson1 | Jack J. Collier1 | Ruth I. C. Glasgow1 | Fiona M. Robertson1 | Angela Pyle2 | Emma L. Blakely1,3 | Charlotte L. Alston1,3 | Monika Oláhová1 | Robert McFarland1 | Robert W. Taylor1,3 1Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Abstract Newcastle University, Newcastle upon Mitochondrial disease is hugely diverse with respect to associated clinical presenta- Tyne, UK tions and underlying genetic causes, with pathogenic variants in over 300 disease 2 Wellcome Centre for Mitochondrial genes currently described. Approximately half of these have been discovered in the Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon last decade due to the increasingly widespread application of next generation Tyne, UK sequencing technologies, in particular unbiased, whole exome—and latterly, whole 3 NHS Highly Specialised Mitochondrial genome sequencing. These technologies allow more genetic data to be collected from Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, patients with mitochondrial disorders, continually improving the diagnostic success Newcastle upon Tyne, UK rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of Correspondence Robert W. Taylor, Wellcome Centre for unknown significance have become a major challenge with next generation sequenc- Mitochondrial Research, Institute of ing strategies and these require significant functional validation to confirm pathoge- Neuroscience, Newcastle University, nicity. This interface between diagnostics and research is critical in continuing to Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. expand the list of known pathogenic variants and concomitantly enhance our knowl- Email: [email protected] edge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other “omics” techniques such as transcriptomics and Communicating Editor: Verena Peters proteomics will generate even more data and allow further interrogation and valida- Funding information tion of genetic causes, including those outside of coding regions. This will improve Medical Research Council, Grant/Award Number: G0800674; National Institute for diagnostic yields still further and emphasizes the integral role that functional assess- Health Research, Grant/Award Number: NIHR- ment of variant causality plays in this process—the overarching focus of this review. HCS-D12-03-04; The Lily Foundation; UK NHS Highly Specialised Service for Rare KEYWORDS Mitochondrial Disorders; Wellcome Trust, diagnosis, mitochondrial disease, molecular mechanisms, next generation sequencing Grant/Award Number: 203105/Z/16/Z 1 | INTRODUCTION 1.1 | Mitochondrial disease overview Mitochondrial disorders are the most common group of inborn errors of metabolism with an estimated minimum Kyle Thompson and Jack J. Collier contributed equally to this study. disease prevalence in adults of 12.5 per 100 000,1 and This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM 36 wileyonlinelibrary.com/journal/jimd J Inherit Metab Dis. 2020;43:36–50. THOMPSON ET AL. 37 4.7 per 100 000 in children.2 “Mitochondrial disease” is a to, iron sulfur cluster formation,8 the citric acid cycle,9 regu- collective term for many different clinical disorders united lation of apoptosis10 and calcium homeostasis in conjunction by the common features of failure of mitochondrial function with the endoplasmic reticulum.11 and aberrant energy metabolism.3 Mitochondrial disorders Human mtDNA is a closed-circular molecule of can present at any age and result from pathogenic variants in 16 569 bp and encodes 37 genes; 13 polypeptides, 22 trans- either the nuclear genome (nDNA) or mitochondrial genome fer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs).12 The (mtDNA). Due to this dual genetic control of mitochondrial mitochondrial genome is exclusively maternally-inherited function, these disorders can be inherited with any inheri- and is present in multiple copies within cells. Cells can be tance pattern: sporadic, maternal, autosomal dominant, auto- homoplasmic, where all mtDNA molecules are identical, or somal recessive or X-linked. heteroplasmic, where two (or more) variant populations of Mitochondria are present in all nucleated cell types and mtDNA exist within one cell. Heteroplasmy levels are a fac- therefore, mitochondrial disease may affect any organ or tis- tor in determining the aforementioned clinical heterogeneity sue in the body. Some patients have an organ specific in patients harboring the common pathogenic m.3243A > G 13 disease—“pure” myopathy, cardiomyopathy or optic neu- variant. However, heteroplasmy does not fully explain the 14 ropathy, while others have multisystem involvement at pre- phenotypic variability with sex and heritable nuclear fac- sentation or acquire this during the course of their tors15 likely to play a role. progressive disease. While there may be some diagnostic, All 13 mtDNA-encoded proteins are essential hydropho- and potentially prognostic, utility in categorising the myriad bic components of the OXPHOS system located in the inner clinical features as particular syndromes e.g. MELAS (Mito- mitochondrial membrane (IMM). The OXPHOS system chondrial encephalomyopathy, lactic acidosis, and stroke- comprises five multi-subunit complexes and two electron like episodes); MERRF (Myoclonic epilepsy with ragged carriers (ubiquinone and cytochrome c). Complexes I-IV red fibres); LHON (Leber hereditary optic neuropathy); and the electron carriers constitute the electron transport NARP (Neuropathy, ataxia, and retinitis pigmentosa); Leigh chain, which establishes an electrochemical gradient across Syndrome and Pearson Syndrome, the reality is that many the IMM that is then dissipated via complex V (the F1FO patients do not fit easily into this syndromic classification. ATP synthase) to synthesize ATP. Individual OXPHOS A further complication is that genotype-phenotype correla- complexes can also combine into larger complexes; the crys- tions in mitochondrial disease are often poor, even within tal structures of some of these supercomplexes, including the these defined syndromes. For example, Leigh syndrome, mammalian respirasome, have recently been elucidated.16,17 which presents as a progressive neurodegenerative disorder In addition to the 13 polypeptides encoded by mtDNA, in childhood, exhibits marked genetic variability and is asso- more than 60 further nuclear-encoded respiratory chain pro- ciated with pathogenic variants in more than 75 different teins are translated in the cytosol and imported into mito- mtDNA or nDNA genes.4,5 Conversely, a single genotype chondria prior to incorporation into the OXPHOS can present with a range of phenotypes; the most common complexes. Indeed, the nuclear genome accounts for 99% of heteroplasmic pathogenic mtDNA variant, m.3243A > G, the mitochondrial proteome which is estimated to comprise can present with a classic MELAS phenotype, but also with 1158 total mitochondrial proteins.18 A large proportion of MIDD (Maternally-inherited diabetes and deafness), sensori- these proteins have important roles in OXPHOS, either neural hearing loss, myopathy, cardiomyopathy, seizures, directly as respiratory complex subunits, cofactors, assembly migraine, ataxia, cognitive impairment, bowel dysmotility, factors and substrate-generating upstream pathways, or more short stature, diabetes, external ophthalmoplegia or Leigh indirectly, for example, factors involved in the expression of syndrome and 9% of individuals are asymptomatic.6 The mtDNA-encoded genes. Mitochondrial gene expression vast clinical and genetic heterogeneity of mitochondrial dis- requires proteins involved in mtDNA maintenance, tran- ease coupled with poor genotype-phenotype correlations scription, RNA processing/maturation, translation and post- makes the genetic diagnosis of patients a challenging task. translational insertion into the IMM. Furthermore, all of these proteins need to be correctly targeted and imported into the mitochondria. Thus, any defects in mitochondrial 1.2 | Mitochondrial function and genetics protein import or the structure of the mitochondria, caused Mitochondria are dynamic organelles that are responsible for by aberrant cristae formation or abnormal membrane lipid the generation of adenosine triphosphate (ATP) via oxidative composition, as well as factors affecting mitochondrial fis- phosphorylation (OXPHOS); approximately 90% of the sion and fusion can also negatively impact the OXPHOS energy requirement of the cell is met through hydrolysis of system. The genetic heterogeneity of mitochondrial disor- ATP produced this way.7 However, mitochondria are also ders is a consequence of this wide range of proteins that involved in many other processes including, but not limited impact OXPHOS function. Over 300 mitochondrial disease- 38 THOMPSON ET AL. mtDNA pathogenic variants: 36/37 genes OXPHOS (CI) MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L,
Recommended publications
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Role of Mitochondrial Ribosomal Protein S18-2 in Cancerogenesis and in Regulation of Stemness and Differentiation
    From THE DEPARTMENT OF MICROBIOLOGY TUMOR AND CELL BIOLOGY (MTC) Karolinska Institutet, Stockholm, Sweden ROLE OF MITOCHONDRIAL RIBOSOMAL PROTEIN S18-2 IN CANCEROGENESIS AND IN REGULATION OF STEMNESS AND DIFFERENTIATION Muhammad Mushtaq Stockholm 2017 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB 2017 © Muhammad Mushtaq, 2017 ISBN 978-91-7676-697-2 Role of Mitochondrial Ribosomal Protein S18-2 in Cancerogenesis and in Regulation of Stemness and Differentiation THESIS FOR DOCTORAL DEGREE (Ph.D.) By Muhammad Mushtaq Principal Supervisor: Faculty Opponent: Associate Professor Elena Kashuba Professor Pramod Kumar Srivastava Karolinska Institutet University of Connecticut Department of Microbiology Tumor and Cell Center for Immunotherapy of Cancer and Biology (MTC) Infectious Diseases Co-supervisor(s): Examination Board: Professor Sonia Lain Professor Ola Söderberg Karolinska Institutet Uppsala University Department of Microbiology Tumor and Cell Department of Immunology, Genetics and Biology (MTC) Pathology (IGP) Professor George Klein Professor Boris Zhivotovsky Karolinska Institutet Karolinska Institutet Department of Microbiology Tumor and Cell Institute of Environmental Medicine (IMM) Biology (MTC) Professor Lars-Gunnar Larsson Karolinska Institutet Department of Microbiology Tumor and Cell Biology (MTC) Dedicated to my parents ABSTRACT Mitochondria carry their own ribosomes (mitoribosomes) for the translation of mRNA encoded by mitochondrial DNA. The architecture of mitoribosomes is mainly composed of mitochondrial ribosomal proteins (MRPs), which are encoded by nuclear genomic DNA. Emerging experimental evidences reveal that several MRPs are multifunctional and they exhibit important extra-mitochondrial functions, such as involvement in apoptosis, protein biosynthesis and signal transduction. Dysregulations of the MRPs are associated with severe pathological conditions, including cancer.
    [Show full text]
  • Changes in S100 Proteins Identified in Healthy Skin Following Electrical
    ORIGINAL INVESTIGATION Changes in S100 Proteins Identified in Healthy Skin following Electrical Stimulation: Relevance for Wound Healing Chloe Lallyett, PhD; Ching-Yan Chloe´ Yeung, PhD; Rie Harboe Nielson, MD, PhD; Leo A. H. Zeef, PhD; David Chapman-Jones, LLM(Med), PhD; Michael Kjaer, MD, PhD; and Karl E. Kadler, PhD 06/26/2018 on BhDMf5ePHKbH4TTImqenVAPwFBsBoeDVImZomrjVxzowvsQ/48dPRpSH85u6rLRp by http://journals.lww.com/aswcjournal from Downloaded 1 ABSTRACT ago. There are various types of electrical stimulation (ES) devices, for example, the PosiFect RD DC device (BioFiscia, Odiham, Downloaded OBJECTIVE: Targeted electrical energy applied to wounds has Hampshire, United Kingdom) and the woundEL LVMPC device been shown to improve wound-healing rates. However, the (Go¨ teborg, Sweden). Despite variation in application mode, dose, from mechanisms are poorly understood. The aim of this study was to http://journals.lww.com/aswcjournal and duration of therapy, the majority of trials show significant identify genes that are responsive to electrical stimulation (ES) in improvement in wound healing or wound area reduction with healthy subjects with undamaged skin. ES therapy compared with control treatment or standard care.2,3 METHODS: To achieve this objective, study authors used a small, Y The use of continuous direct current4 7 of 200 to 800 KA and pulsed noninvasive ES medical device to deliver a continuous, specific, current8,9 improved healing of chronic wounds in a number of set sequence of electrical energy impulses over a 48-hour period studies. However, the mechanisms of ES-mediated wound healing by to the skin of healthy volunteers and compared resultant gene BhDMf5ePHKbH4TTImqenVAPwFBsBoeDVImZomrjVxzowvsQ/48dPRpSH85u6rLRp in vivo are poorly understood; a number of different explanations expression by microarray analysis.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson’S Disease and Huntington’S Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease TESI DOCTORAL 2018 Programa de Doctorat en Neurociències Institut de Neurociències Tesi realitzada al laboratori de Malalties Neurodegeenratives de l’Institut de Recerca de la Vall d’Hebron (VHIR) Doctorand Director Tutor Sandra Franco Iborra Miquel Vila Bover José Rodríguez Álvarez Co-directora Co-directora Celine Perier Marta Martínez Vicente i AGRAÏMENTS En primer lloc vull agraïr al Miquel Vila per l’oportunitat que em va donar de començar a fer la tesi doctoral al seu lab. Gràcies per tenir sempre la porta oberta del teu despatx, per la confiança dipositada en mi i per tot el que m’has ensenyat durant tots aquests anys. A més, he tingut la sort de tenir no només un director de tesis sinó tres! Celine muchas gracias por estar siempre ahí, por ensenyarme tu manera de hacer ciencia (que me encanta!) y por ser siempre tan positiva. En mi manera de trabajar hay un poquito de ti y espero ir pasando este conocimiento a los demás porque en todo laboratorio debería ser obligatorio que hubiera alguien como tu.
    [Show full text]
  • Supplementary Figures 1-14 and Supplementary References
    SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924).
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Multivariate Analysis Reveals Genetic Associations of the Resting Default
    Multivariate analysis reveals genetic associations of PNAS PLUS the resting default mode network in psychotic bipolar disorder and schizophrenia Shashwath A. Medaa,1, Gualberto Ruañob,c, Andreas Windemuthb, Kasey O’Neila, Clifton Berwisea, Sabra M. Dunna, Leah E. Boccaccioa, Balaji Narayanana, Mohan Kocherlab, Emma Sprootena, Matcheri S. Keshavand, Carol A. Tammingae, John A. Sweeneye, Brett A. Clementzf, Vince D. Calhoung,h,i, and Godfrey D. Pearlsona,h,j aOlin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT 06102; bGenomas Inc., Hartford, CT 06102; cGenetics Research Center, Hartford Hospital, Hartford, CT 06102; dDepartment of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02215; eDepartment of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; fDepartment of Psychology, University of Georgia, Athens, GA 30602; gThe Mind Research Network, Albuquerque, NM 87106; Departments of hPsychiatry and jNeurobiology, Yale University, New Haven, CT 06520; and iDepartment of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87106 Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review July 15, 2013) The brain’s default mode network (DMN) is highly heritable and is Although risk for psychotic illnesses is driven in small part by compromised in a variety of psychiatric disorders. However, ge- highly penetrant, often private mutations such as copy number netic control over the DMN in schizophrenia (SZ) and psychotic variants, substantial risk also is likely conferred by multiple genes bipolar disorder (PBP) is largely unknown. Study subjects (n = of small effect sizes interacting together (7). According to the 1,305) underwent a resting-state functional MRI scan and were “common disease common variant” (CDCV) model, one would analyzed by a two-stage approach.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The LYR Protein Subunit NB4M/NDUFA6 of Mitochondrial Complex I Anchors an Acyl Carrier Protein and Is Essential for Catalytic Activity
    The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity Heike Angerera, Michael Radermacherb, Michalina Mankowska a, Mirco Stegerc, Klaus Zwickerd, Heinrich Heidec, Ilka Wittigc,e, Ulrich Brandte,f, and Volker Zickermanna,e,1 aInstitute of Biochemistry II, Structural Bioenergetics Group, Medical School, Goethe University Frankfurt, 60438 Frankfurt, Germany; bDepartment of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT 05405; cFunctional Proteomics, SFB 815 Core Unit, and dInstitute of Biochemistry I, Medical School, Goethe University Frankfurt, 60590 Frankfurt, Germany; eCluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Germany; and fNijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands Edited by Wolfgang Baumeister, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved February 25, 2014 (received for review December 4, 2013) Mitochondrial complex I is the largest and most complicated enzyme is identical to LYR motif containing protein 6 (LYRM6). Sever- of the oxidative phosphorylation system. It comprises a number al other LYRM proteins were shown to be associated with of so-called accessory subunits of largely unknown structure and the maintenance of mitochondrial homeostasis. LYRM4 (alterna- function. Here we studied subunit NB4M [NDUFA6, LYR motif tive designation ISD11, iron-sulfur protein biogenesis
    [Show full text]