Parameterization of Tensor Network Contraction

Total Page:16

File Type:pdf, Size:1020Kb

Parameterization of Tensor Network Contraction Parameterization of tensor network contraction Bryan O’Gorman Berkeley Quantum Information & Computation Center, University of California, Berkeley, CA, USA Quantum Artificial Intelligence Laboratory, NASA Ames, Moffett Field, CA, USA [email protected] Abstract We present a conceptually clear and algorithmically useful framework for parameterizing the costs of tensor network contraction. Our framework is completely general, applying to tensor networks with arbitrary bond dimensions, open legs, and hyperedges. The fundamental objects of our framework are rooted and unrooted contraction trees, which represent classes of contraction orders. Properties of a contraction tree correspond directly and precisely to the time and space costs of tensor network contraction. The properties of rooted contraction trees give the costs of parallelized contraction algorithms. We show how contraction trees relate to existing tree-like objects in the graph theory literature, bringing to bear a wide range of graph algorithms and tools to tensor network contraction. Independent of tensor networks, we show that the edge congestion of a graph is almost equal to the branchwidth of its line graph. 2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory of computation → Quantum information theory; Theory of computation → Graph algorithms analysis Keywords and phrases Tensor networks, Parameterized complexity, Tree embedding, Congestion Funding The author was supported by a NASA Space Technology Research Fellowship. Acknowledgements The author thanks Benjamin Villalonga for motivating this work, useful discussions, and feedback on the manuscript. 1 Introduction Tensor networks are widely used in chemistry and physics. Their graphical structure provides an effective way for expressing and reasoning about quantum states and circuits. As a model for quantum states, they have been very successful in expressing ansatzes in variational algorithms (e.g., PEPS, MPS, and MERA). As a model for quantum circuits, they have been used in state-of-the-art simulations [27, 19, 18, 20, 24]. In the other direction, quantum circuits can also simulate tensor networks, in the sense that (additively approximate) tensor network contraction is complete for quantum computation [3]. The essential computation in the application of tensor networks is tensor network con- traction, i.e., computing the single tensor represented by a tensor network. Tensor network contraction is #P-hard in general [6] but fixed-parameter tractable. Markov and Shi [22] defined the contraction complexity of a tensor network and showed that contraction can be arXiv:1906.00013v1 [cs.DS] 31 May 2019 done in time that scales exponentially only in the treewidth of the line graph of the tensor network. Given a tree decomposition of the line graph of a tensor network, a contraction order can be found such that the contraction takes time exponential in the width of the decomposition, and vice versa. However, the translation between contraction orders and tree decompositions does not account for polynomial prefactors. This is acceptable in the- ory, where running times of O(n2n) and of O(2n) are both “exponential”; in practice, the difference between Θ(n2n) and Θ(2n) can be the difference between feasible and infeasible. We give an alternative characterization of known results in terms of tree embeddings of the tensor network rather than tree decompositions of the line graph thereof. In this context, we call such tree embeddings contraction trees. While one can efficiently interconvert 2 Parameterization of tensor network contraction between a contraction tree of a tensor network and a tree decomposition of the line graph, contraction trees exactly model the matrix multiplications done by a contraction algorithm in an abstract way. That is, the time complexity of contraction is exactly and directly expressed as a property of contraction trees, in contrast to tree decompositions of line graphs, which only capture the exponent. Our approach is thus more intuitive and precise, and easily applies to tensor networks with arbitrary bond dimensions and open legs. We show that contraction trees also capture the space needed by a matrix-multiplication- based contraction algorithm. In practice, space often competes with time as the limiting constraint. Even further, we can express the time used by parallel algorithms as a property of rooted contraction trees, which are to contraction orders as partial orders are to total orders. In a contraction tree, tensors are assigned to the leaves and each wire is “routed” through the tree from one leaf to another. The congestion of a vertex of the contraction tree is the number of such routings that pass through it, and similarly for the congestion of an edge. The vertex congestion of a graph G, denoted vc(G), is the minimum over contraction trees of the maximum congestion of a vertex, and similarly for the edge congestion, denoted ec(G). Formally, our main results are the following two theorems. vc(G)+1 I Theorem 1. A tensor network (G, M) can be contracted in time n2 and space n2vc(G)+1, or in time 21.5ec(G)+1 and space 2ec(G)+1. More precisely, the tensor network can P vc(t) be contracted in time min(T,b) t∈T 2 , where the minimization is over contraction trees (T, b). The contraction can be done using space equal to the minimum weighted, directed modified cutwidth of a rooted contraction tree using edge weights w(f) = 2ec(f). If the contraction is done as a series of matrix multiplications, these precise space and time bounds are tight (though not necessarily simultaneously achievable). I Theorem 2. A parallel algorithm can contract a tensor network (G, M) in time P vc(t) min(T,b) maxl t 2 , where the minimization is over rooted contraction trees (T, b), the maximization is over leaves l of T , and the summation is over vertices of t on the unique path from the leaf l to the root r. In other words, the time is the minimum vertex-weighted height of a rooted contraction tree, where the weight of a vertex is w(t) = 2vc(t). If the contraction is done as matrix multiplications in parallel, this is tight. Given a tree decomposition of a line graph with width k − 1, we can efficiently construct a contraction tree of the original graph with vertex congestion k. Thus one immediate application of our framework is as a way of precisely assessing the costs of contraction implied by different tree decompositions (even of the same width) computed using existing methods. This is especially useful in distinguishing between contraction orders that have the same time requirements but different space requirements; prior to this work, there was no comprehensive way of quantifying the space requirements, which in practice can be the limiting factor. Alternatively, one can start with existing algorithms for computing good branch decompositions, which can be converted into contraction trees of small edge congestion. More broadly, identifying the right abstraction (i.e., contraction trees) and precise quantification of the space and time costs is a foundation for minimizing those costs as much as possible. In Section 2, we go over the graph-theoretic concepts that are the foundation of this work. In Section 3, we present seemingly unrelated graph properties in a unified framework that may be of independent interest. Section 3, while strictly unnecessary for understanding the main results, helps explain the relationship between our work and prior work. In Section 4, we introduce the cost model on which our results are based. In Section 5, we give our main results. In Section 6, we discuss extensions and generalizations of the main ideas. In Section 7, B. O’Gorman 3 Figure 1 Two unrooted contraction trees for a tensor network with 6 tensors. Each color corresponds to a wire of the tensor network. The inclusion of a color in the representation of a vertex or edge of the contraction tree indicates the contribution of the corresponding wire’s weight to the congestion of the vertex or edge, respectively. we conclude with some possible directions for future work. In Appendix A, we prove that the edge congestion of a graph is almost equal to the branchwidth of its line graph. 2 Background Let [i, n] = {j ∈ Z|i ≤ j ≤ n}, [n] = [1, n], and [n] = [n1] × [n2] × · · · × [nr] for n = + r S (n1, . , nr) ∈ (Z ) . Let G[S] = V, E ∩ 2 be the subgraph of G induced by a subset of the vertices S ⊂ V (G). For two disjoint sets of vertices of an edge-weighted graph, w(S, S0) = P {u,v}∈E|u∈S,v∈S0 w({u, v}) is the sum of the weights of the edges between S ⊂ V and 0 P S ⊂ V . More generally, for r disjoint sets of vertices, w(S1,...,Sr) = [r] w(Si,Sj) {i,j}∈( 2 ) is the sum of the weights of the edges with endpoints in distinct sets. In this context, we will denote singleton sets by their sole arguments, e.g., w(u, v) = w({u}, {v}) = w({u, v}). 2.1 Tensor networks and contraction A tensor can be defined in several equivalent ways. Most concretely, it is a multidimensional array. Specifically, a rank-r tensor is an r-dimensional array of size d = (d1, . , dr). More abstractly, a tensor is a collection of numbers indexed by the Cartesian product of some set of indices, e.g., [T ] indexed by i ∈ [n]. Alternatively, a tensor i1,i2...,ir (i1,i2,...,ir )∈[d1]×[d2]×···×[dr ] can be thought of as a multilinear map T :[d] → C. (Our focus will be on complex-valued tensors.) I Definition 3 (Tensor network). A tensor network (G, M) is an undirected graph G with edge weights w and a set of tensors M = {Mv|v ∈ V (G)} such that Mv is a |N(v)|-rank deg(v) P tensor with 2 entries, where deg(v) = u∈N(v) w({u, v}) is the weighted degree of v.
Recommended publications
  • Lipics-WABI-2021-7.Pdf (2
    Tree Diet: Reducing the Treewidth to Unlock FPT Algorithms in RNA Bioinformatics Bertrand Marchand # LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée, France Yann Ponty1 # LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France Laurent Bulteau1 # LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée, France Abstract Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed- Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to extend their scope of applicability, we introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down to a prescribed treewidth tw′. Our rationale is that the time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to take deleted edges into account. Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2O(tw)n time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., NP-hardness when tw′ or tw−tw′ is constant). We propose a prototype implementation for our approach which we apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption of tree-decomposition-based algorithms in Bioinformatics.
    [Show full text]
  • Complexity and Exact Algorithms for Vertex Multicut in Interval and Bounded Treewidth Graphs 1
    Complexity and Exact Algorithms for Vertex Multicut in Interval and Bounded Treewidth Graphs 1 Jiong Guo a,∗ Falk H¨uffner a Erhan Kenar b Rolf Niedermeier a Johannes Uhlmann a aInstitut f¨ur Informatik, Friedrich-Schiller-Universit¨at Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany bWilhelm-Schickard-Institut f¨ur Informatik, Universit¨at T¨ubingen, Sand 13, D-72076 T¨ubingen, Germany Abstract Multicut is a fundamental network communication and connectivity problem. It is defined as: given an undirected graph and a collection of pairs of terminal vertices, find a minimum set of edges or vertices whose removal disconnects each pair. We mainly focus on the case of removing vertices, where we distinguish between allowing or disallowing the removal of terminal vertices. Complementing and refining previous results from the literature, we provide several NP-completeness and (fixed- parameter) tractability results for restricted classes of graphs such as trees, interval graphs, and graphs of bounded treewidth. Key words: Combinatorial optimization, Complexity theory, NP-completeness, Dynamic programming, Graph theory, Parameterized complexity 1 Introduction Motivation and previous results. Multicut in graphs is a fundamental network design problem. It models questions concerning the reliability and ∗ Corresponding author. Tel.: +49 3641 9 46325; fax: +49 3641 9 46002 E-mail address: [email protected]. 1 An extended abstract of this work appears in the proceedings of the 32nd Interna- tional Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2006) [19]. Now, in particular the proof of Theorem 5 has been much simplified. Preprint submitted to Elsevier Science 2 February 2007 robustness of computer and communication networks.
    [Show full text]
  • A Width Parameter Useful for Chordal and Co-Comparability Graphs
    A width parameter useful for chordal and co-comparability graphs Dong Yeap Kang1, O-joung Kwon2, Torstein J. F. Strømme3, and Jan Arne Telle3 ? 1 Department of Mathematical Sciences, KAIST, Daejeon, South Korea 2 Institute of Software Technology and Theoretical Computer Science, TU Berlin, Germany 3 Department of Informatics, University of Bergen, Norway [email protected], [email protected], [email protected], [email protected] Abstract. In 2013 Belmonte and Vatshelle used mim-width, a graph parameter bounded on interval graphs and permutation graphs that strictly generalizes clique-width, to explain existing algorithms for many domination-type problems, also known as (σ; ρ)- problems or LC-VSVP problems, on many special graph classes. In this paper, we focus on chordal graphs and co-comparability graphs, that strictly contain interval graphs and permutation graphs respectively. First, we show that mim-width is unbounded on these classes, thereby settling an open problem from 2012. Then, we introduce two graphs Kt Kt and Kt St to restrict these graph classes, obtained from the disjoint union of two cliques of size t, and one clique of size t and one independent set of size t respec- tively, by adding a perfect matching. We prove that (Kt St)-free chordal graphs have mim-width at most t − 1, and (Kt Kt)-free co-comparability graphs have mim-width at most t − 1. From this, we obtain several algorithmic consequences, for instance, while Dominating Set is NP-complete on chordal graphs, like all LC-VSVP problems it can be solved in time O(nt) on chordal graphs where t is the maximum among induced sub- graphs Kt St in the given graph.
    [Show full text]
  • Graceful Labeling of Graphs
    GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia de Sistemas e Computação. Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Rio de Janeiro Dezembro de 2016 GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO. Examinada por: Prof. Celina Miraglia Herrera de Figueiredo, D.Sc. Prof. Vinícius Gusmão Pereira de Sá, D.Sc. Prof. Rosiane de Freitas Rodrigues, D.Sc. Prof. Raphael Carlos Santos Machado, D.Sc. RIO DE JANEIRO, RJ – BRASIL DEZEMBRO DE 2016 Zhou, Rodrigo Ming Graceful Labeling of Graphs/Rodrigo Ming Zhou. – Rio de Janeiro: UFRJ/COPPE, 2016. IX, 40 p.: il.; 29; 7cm. Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Dissertação (mestrado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2016. Bibliography: p. 38 – 40. 1. graceful labeling. 2. computational proofs. 3. graphs. I. de Figueiredo, Celina Miraglia Herrera et al. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Sistemas e Computação. III. Título. iii Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.) GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou Dezembro/2016 Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Programa: Engenharia de Sistemas e Computação Em 1966, A.
    [Show full text]
  • Improved Lower Bounds for Graph Embedding Problems
    Improved Lower Bounds for Graph Embedding Problems Hans L. Bodlaender1;2? and Tom C. van der Zanden1 1 Department of Computer Science, Utrecht University, Utrecht, The Netherlands fH.L.Bodlaender,[email protected] 2 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands Abstract. In this paper, we give new, tight subexponential lower bounds for a number of graph embedding problems. We introduce two related combinatorial problems, which we call String Crafting and Orthog- onal Vector Crafting, and show that these cannot be solved in time 2o(jsj= log jsj), unless the Exponential Time Hypothesis fails. These results are used to obtain simplified hardness results for several graph embedding problems, on more restricted graph classes than previ- ously known: assuming the Exponential Time Hypothesis, there do not exist algorithms that run in 2o(n= log n) time for Subgraph Isomorphism on graphs of pathwidth 1, Induced Subgraph Isomorphism on graphs of pathwidth 1, Graph Minor on graphs of pathwidth 1, Induced Graph Minor on graphs of pathwidth 1, Intervalizing 5-Colored Graphs on trees, and finding a tree or path decomposition with width at most c with a minimum number of bags, for any fixed c ≥ 16. 2Θ(n= log n) appears to be the \correct" running time for many pack- ing and embedding problems on restricted graph classes, and we think String Crafting and Orthogonal Vector Crafting form a useful framework for establishing lower bounds of this form. 1 Introduction Many NP-complete graph problems admit faster algorithms when restricted to planar graphs.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 08 November 2010 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Carvalho, C. and Dalmau, V. and Krokhin, A. (2008) 'Caterpillar duality for constraint satisfaction problems.', in Twenty-third Annual IEEE Symposium on Logic in Computer Science, 24-27 June 2008, Pittsburgh, PA ; proceedings. Los Alamitos, CA: IEEE, 307 -316 . Further information on publisher's website: http://dx.doi.org/10.1109/LICS.2008.19 Publisher's copyright statement: c 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk 23rd Annual IEEE Symposium on Logic in Computer Science Caterpillar duality for constraint satisfaction problems Catarina Carvalho V´ıctor Dalmau Andrei Krokhin Durham University University Pompeu Fabra Durham University Durham, DH1 3LE, UK Barcelona, 08003 Spain Durham, DH1 3LE, UK [email protected] [email protected] [email protected] Abstract programming language Datalog and its fragments are ar- guably some of the most important tools for solving CSPs.
    [Show full text]
  • The Line Graph of a Tree and Its Edge Ideal
    THE LINE GRAPH OF A TREE AND ITS EDGE IDEAL ANDA OLTEANU Abstract. We describe all the trees with the property that the corresponding edge ideal of their line graph has a linear resolution. As a consequence, we give a complete characterization of those trees T for which the line graph L(T ) is co- chordal. We compute also the second Betti number of the edge ideal of L(T ) and we determine the number of cycles in L(T ). As a consequence, we obtain also the first Zagreb index of a graph. For edge ideals of line graphs of caterpillar graphs we determine the Krull dimension, the Castelnuovo-Mumford regularity, and the projective dimension under some additional assumption on the degrees of the cutpoints. Introduction Firstly used under this name by Harary and Norman in [15], line graphs have been intensively studied in combinatorics. Recall that, for a finite simple graph G, its line graph, denoted by L(G), is the graph with the vertex set given by the edges of G and two vertices in L(G) are joined by an edge if the corresponding edges are adjacent in G. There are several characterizations of graphs which are lines of some graphs. For instance, Beineken characterized the line graphs in terms of the forbidden induced subgraphs [3]. Moreover, combinatorial properties of line graphs have been studied: Akiyama solved seven graph equations which involved line graphs, powers of graphs and the complementary of a graph [1] and Milaniˇc,Oversberg and Schaudt gave a characterization of those line graphs which are squares of graphs [23].
    [Show full text]
  • 0 Interval Deletion Is Fixed-Parameter Tractable
    0 Interval Deletion is Fixed-Parameter Tractable YIXIN CAO and DANIEL´ MARX, Hungarian Academy of Sciences (MTA SZTAKI) We study the minimum interval deletion problem, which asks for the removal of a set of at most k vertices to make a graph of n vertices into an interval graph. We present a parameterized algorithm of runtime 10k · nO(1) for this problem, that is, we show the problem is fixed-parameter tractable. Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph algorithms; F.2.2 [Nonnumerical Algorithms and Problems]: Computations on discrete structures General Terms: Algorithms Additional Key Words and Phrases: Asteroidal triple, congenial hole, modular decomposition ACM Reference Format: Yixin Cao and D´anielMarx. 2014. Interval Deletion is Fixed-Parameter Tractable. ACM Trans. Algor. 0, 0, Article 0 ( 20xx), 34 pages. DOI:http://dx.doi.org/10.1145/0000000.0000000 1. INTRODUCTION A graph is an interval graph if its vertices can be assigned to intervals of the real line such that there is an edge between two vertices if and only if their corresponding intervals intersect. Interval graphs are the natural models for DNA chains in biology and many other applications, among which the most cited ones include jobs scheduling in industrial engineering [Bar-Noy et al. 2001] and seriation in archeology [Kendall 1969]. Motivated by pure contemplation of combinatorics and practical problems of biology respectively, Haj´os [1957] and Benzer [1959] independently initiated the study of interval graphs. Interval graphs are a proper subset of chordal graphs. After more than half century of intensive investigation, the properties and the recognition of interval and chordal graphs are well understood [Booth and Lueker 1976].
    [Show full text]
  • Clique-Width of Full Bubble Model Graphs
    Forschungsberichte Mathematik/Informatik Fachbereich IV, Universit¨at Trier Clique-width of full bubble model graphs Daniel Meister and Udi Rotics Report No. 13-1 April 2013 Clique-width of full bubble model graphs Daniel Meister∗ Udi Rotics† Abstract A bubble model is a 2-dimensional representation of proper interval graphs. We consider proper interval graphs that have bubble models of specific properties. We characterise the maximal such proper interval graphs of bounded clique-width and of bounded linear clique- width and the minimal such proper interval graphs whose clique-width and linear clique- width exceed the bounds. As a consequence, we can efficiently compute the clique-width and linear clique-width of the considered graphs. 1 Introduction Clique-width is a graph width parameter with applications in efficient graph algorithms [3, 4, 20]. Clique-width generalises treewidth in the sense that graphs of bounded treewidth also have bounded clique-width [5], but graphs of bounded clique-width may have unbounded treewidth. A simple example for the latter relationship are the complete graphs, whose clique-width is at most 2 and whose treewidth is proportional to the number of vertices. Next to their applicational importance, width parameters in general are also and necessarily studied with a focus on their theoretical aspects. The basic questions are about the complexity of recognising graphs of bounded width and about the structure of graphs of bounded width. In this paper, we address these basic questions for clique-width and full bubble model graphs. Clique-width is a graph parameter that is difficult to deal with.
    [Show full text]
  • Algorithm Graph Theory: How Hard Is Your Combinatorial Optimization Problem?
    Algorithm Graph Theory: How hard is your combinatorial optimization problem? Short Course – Lecture 5 June 9, 2017 Slides available at: https://www.math2.rwth‐aachen.de/de/mitarbeiter/koster/agtclemson 09.06.2017 Algorithmic Graph Theory ‐ © Prof. Dr. Arie M.C.A. Koster, 2017 1 Schedule 9.00‐10.30 10.30‐11.00 11:00‐12:30 Wed 06/07 Basics: Complexity Break Basics: First Examples Basics: chordal and perfect Thu 06/08 Basics: Interval graphs Break graphs Treewidth: Graph classes of Fri 06/09 Treewidth: introduction Break bounded treewidth Treewidth: Lower and Upper Treewidth: Dynamic Mon 06/12 Break Bounds Programming Tue 06/13 FPT: Parameterized Complexity Break FPT: Kernelization Wed 06/14 Exact: Branching Algorithms Break Exact: Dynamic Programming 09.06.2017 Algorithmic Graph Theory ‐ © Prof. Dr. Arie M.C.A. Koster, 2017 2 Yesterday: . For chordal graphs we have: vw E k K with v, w V ∈ ⇔∃ ∈ ∈ k . What happens if we change to property to: vw E k K with v,w V ∈ ⇒∃ ∈ ∈ k . So the vertices do not need to be pairwise adjacent in Vk 09.06.2017 Algorithmic Graph Theory ‐ © Prof. Dr. Arie M.C.A. Koster, 2017 3 Tree Decomposition . A tree decomposition (T,X) of G=(V,E): . Tree T=(I,F) with a a g vertex set X associated h i b with every node iI c f . For all edges {v,w}E: d e there is a set Xi containing both v and w . For every vV: the aac f ag g h nodes iI that contain v b c f form a connected subtree d ce 09.06.2017 Alg.
    [Show full text]
  • Algorithmic Complexity Between Structure and Knowledge Nicolas Nisse
    Sophia Antipolis N◦ d'ordre : Habilitation `aDiriger la Recherche pr´esent´eepour obtenir le grade de HDR Sp´ecialit´e: Informatique − Algorithmic complexity Between Structure and Knowledge How Pursuit-evasion Games help Nicolas Nisse − Soutenue le 26 mai 2014 devant le jury compos´ede : Rapporteurs : Cyril GAVOILLE Professeur Dimitrios M. THILIKOS Directeur de Recherche Peter WIDMAYER Professeur Examinateurs : Victor CHEPOI Professeur David COUDERT Charg´ede Recherche Fedor V. FOMIN Professeur Pierre FRAIGNIAUD Directeur de Recherche Jean-Charles REGIN´ Professeur Contents Introduction 5 Pursuit-evasion games . .6 Telecommunication networks and algorithmic perspectives . .7 Organization of the manuscript and personal contributions . .9 1 Turn-by-turn Two-Player Games in Graphs 15 1.1 Cop-number in a nutshell . 16 1.1.1 Cop-number and Meyniel Conjecture . 17 1.1.2 Beyond Meyniel conjecture: when graph structure helps . 21 1.2 Variants of Cops and Robber games . 27 1.2.1 Fast Cops and Robber. 27 1.2.2 Visibility, radius of capture and other variants . 31 1.3 Web-page prefetching and Surveillance game . 33 1.3.1 Complexity and algorithms in several graph classes . 36 1.3.2 Connected and online Surveillance Game . 39 1.4 Fractional Combinatorial games . 41 1.4.1 Fractional Cops and Robber and Surveillance Games . 41 1.4.2 General fractional Games . 43 2 Tree Decomposition, Graph Searching and Applications 45 2.1 Algorithmic applications of tree-decompositions . 46 2.1.1 Treewidth . 46 2.1.2 Applications to parameterized complexity . 47 2.1.3 Computing chordality and \caterpillar" tree-decompositions . 50 2.2 From pursuit-evasion games' point of view .
    [Show full text]
  • Automorphic Decompositions of Graphs Robert Beeler Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 8-2007 Automorphic Decompositions of Graphs Robert Beeler Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Applied Mathematics Commons Recommended Citation Beeler, Robert, "Automorphic Decompositions of Graphs" (2007). All Dissertations. 92. https://tigerprints.clemson.edu/all_dissertations/92 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. AUTOMORPHIC DECOMPOSITIONS OF GRAPHS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Mathematical Sciences by Robert A. Beeler August 2007 Accepted by: Dr. Robert E. Jamison, Committee Chair Dr. Neil J. Calkin Dr. Gretchen L. Matthews Dr. Douglas R. Shier ABSTRACT Let G and H be graphs. A G-decomposition D of a graph H is a partition of the edge set of H such that the subgraph induced by the edges in each part of the partition is isomorphic to G. It is well known that a graceful labelling (or more generally a ρ-valuation) of a graph G induces a cyclic G-decomposition of a complete graph. We will extend these notions to that of a general valuation in a cyclic group. Such valuations yield decompositions of circulant graphs. We will show that every graph has a valuation and hence is a divisor of arbitrarily large circulant graphs. The problem of which graphs can host a decomposition by a graph G is much more difficult and is still open.
    [Show full text]