Dfp) Exposure in Fischer 344 Rat Brain

Total Page:16

File Type:pdf, Size:1020Kb

Dfp) Exposure in Fischer 344 Rat Brain ‘OMIC’ EVALUATION OF THE REGION SPECIFIC CHANGES INDUCED BY NON-CHOLINERGIC DIISOPROPYLFLUOROPHOSPHATE (DFP) EXPOSURE IN FISCHER 344 RAT BRAIN A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Deirdre A. Mahle B.S., University of Dayton, 1987 _____________________________________ 2012 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 5, 2012 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Deirdre A. Mahle ENTITLED ‘Omic’ Evaluation of the Region Specific Changes Induced by Non-Cholinergic Diisopropylfluorophosphate (DFP) Exposure in Fischer 344 Rat Brain BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. ______________________________ Nicholas V. Reo, Ph.D. Dissertation Director ______________________________ Gerald Alter, Ph.D. Director, Biomedical Sciences Ph.D. Program ______________________________ Andrew Hsu, Ph.D. Dean, Graduate School Committee on Final Examination ______________________________ Nicholas V. Reo, Ph.D. ______________________________ Adrian Corbett, Ph.D. ______________________________ James McDougal, Ph.D. ______________________________ James Olson, Ph.D. ______________________________ Michael Raymer, Ph.D. ABSTRACT Mahle, Deirdre A., PhD; Biomedical Sciences PhD program, Department of Biochemistry and Molecular Biology, Wright State University, 2012. ‘Omic’ Evaluation of the Region Specific Changes Induced by Non-Cholinergic Diisopropylfluorophosphate (DFP) Exposure in Fischer 344 Rat Brain Organophosphorous compounds (OPs) are a class of serine esterase inhibitors that have widespread application as pesticides, veterinary pharmaceuticals and chemical warfare agents. Environmental contamination is ubiquitous. The threat of exposure is a concern for both military and civilian populations. Acute inhibition of acetylcholinesterase by OPs triggers a cholinergic crisis that results in muscle flaccidity, paralysis, convulsions and death. At low doses OPs can alter neuronal differentiation, cell signaling, behavior and cognition through unknown mechanisms. An imbalance of reactive oxygen species may be implicated in the adverse effects of OPs. An integrated approach using both metabolomic and transcriptomic techniques was used to reveal some of the non-cholinergic effects of diisopropylfluorophosphate (DFP), a model OP, in rat brain. Adult male Fischer 344 rats were administered 1 mg/kg DFP or saline via subcutaneous injection at 10 mL/kg. Cortex, brainstem, cerebellum and hippocampus were collected at multiple time points ranging from 0.5 - 48 hr. Total RNA was isolated from each region for differential gene expression analysis using the Affymetrix 1.0 ST gene array at 1 hr post dose. Lipid and aqueous extracts were prepared from each brain region at 2 hr post dose, and profiles of small molecule metabolites, lipids and phospholipids were measured using multinuclear NMR spectroscopy. Because the dose was below the threshold for cholinergic iii toxicity, it was hypothesized that DFP exposure would up-regulate inflammatory pathways and down-regulate processes that result in cellular degradation, such as apoptosis, and that these changes would correlate with perturbations in the small molecule and lipid profiles as well as gene expression. All brain regions reached minimum acetylcholinesterase activity (40-55%) at 1- 2 hr post dose with the exception of cortex, which had minimum activity at 12 hr post dose. No brain region showed significant increases in lipid peroxidation. After 1 hr, pathways associated with prostaglandin D2 synthesis were up-regulated in cortex. Brainstem showed increased expression of genes associated with an inflammatory response and ascorbate transport. Cortex showed the most changes in the lipid profile with significant decreases in phosphatidylcholine, phosphatidylethanolamine, cholesterol, n3 and n6 fatty acids. The mitochondrial phospholipid cardiolipin was significantly decreased after 2 hr in brainstem. By evaluating the impact of low level OP exposure on the neuronal phenotype of specific brain regions, we hope to gain a greater understanding of the non-cholinergic mechanisms of action and sensitive target areas in order to improve the development of therapeutic targets for individuals exposed to OPs. iv TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................. 1 1.1 Background .................................................................................................................. 1 1.2 Transcriptomics and metabolomics ............................................................................. 3 1.3 Cholinergic toxicity of OP compounds ........................................................................ 6 1.4 Non cholinergic toxicity of OP compounds ............................................................... 13 1.5 Altered phenotypes after OP exposure....................................................................... 15 1.6 OPs and oxidative stress ............................................................................................ 16 1.7 OPs and inflammation................................................................................................ 19 1.8 Diisopropylfluorophosphate ...................................................................................... 19 1.9 Selection of brain regions .......................................................................................... 21 1.10 Thesis focus and significance .................................................................................. 22 II. MATERIALS AND METHODS ..................................................................................... 23 2.1 Animals and treatments.............................................................................................. 23 2.2 Biochemical assays .................................................................................................... 26 2.3 RNA preparation ........................................................................................................ 28 2.3.1 RNA isolation ................................................................................................. 28 2.3.2 1st strand cDNA synthesis ............................................................................... 30 2.3.3 2nd strand cDNA synthesis .............................................................................. 32 2.3.4 Synthesis of cRNA using in vitro transcription (IVT) .................................... 32 2.3.5 Purification of cRNA ...................................................................................... 32 2.3.6 2nd cycle cDNA synthesis ................................................................................ 33 v 2.3.7 Fragmentation, labeling and hybridization of single stranded cDNA ............. 34 2.3.8 Data processing procedures............................................................................. 35 2.4 GeneChip analysis ..................................................................................................... 36 2.5 NMR sample preparation ........................................................................................... 38 2.6 NMR analysis ............................................................................................................ 40 2.7 NMR data analysis and quantification of specific metabolites .................................. 40 III. RESULTS ......................................................................................................................... 43 3.1 Basal regional differences .......................................................................................... 43 3.1.1 Basal AChE activity ........................................................................................ 43 3.1.2 Basal lipid profiles .......................................................................................... 44 3.1.3 Aqueous metabolite profiles ........................................................................... 47 3.2 Cortex......................................................................................................................... 48 3.2.1 Biochemical assays ......................................................................................... 48 3.2.2 Differential gene expression in cortex ............................................................ 50 3.2.3 Metabolic changes in cortex............................................................................ 53 3.3 Brainstem ................................................................................................................... 56 3.3.1 Biochemical assays ......................................................................................... 56 3.3.2 Differential gene expression in brainstem ....................................................... 57 3.3.3 Metabolic changes in brainstem ...................................................................... 59 3.4 Cerebellum ................................................................................................................. 62 3.4.1 Biochemical assays ......................................................................................... 62 3.4.2 Differential gene expression in cerebellum ..................................................... 64 3.4.3 Metabolic changes in cerebellum ...................................................................
Recommended publications
  • Systems and Chemical Biology Approaches to Study Cell Function and Response to Toxins
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by MSc. Yingying Jiang born in Shandong, China Oral-examination: Systems and chemical biology approaches to study cell function and response to toxins Referees: Prof. Dr. Rob Russell Prof. Dr. Stefan Wölfl CONTRIBUTIONS The chapter III of this thesis was submitted for publishing under the title “Drug mechanism predominates over toxicity mechanisms in drug induced gene expression” by Yingying Jiang, Tobias C. Fuchs, Kristina Erdeljan, Bojana Lazerevic, Philip Hewitt, Gordana Apic & Robert B. Russell. For chapter III, text phrases, selected tables, figures are based on this submitted manuscript that has been originally written by myself. i ABSTRACT Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once drugs reached the market. Prediction of potential toxicities in the early stage of drug development has thus become of great interest to reduce such costly failures. Since toxicity results from chemical perturbation of biological systems, we combined biological and chemical strategies to help understand and ultimately predict drug toxicities. First, we proposed a systematic strategy to predict and understand the mechanistic interpretation of drug toxicities based on chemical fragments. Fragments frequently found in chemicals with certain toxicities were defined as structural alerts for use in prediction. Some of the predictions were supported with mechanistic interpretation by integrating fragment- chemical, chemical-protein, protein-protein interactions and gene expression data. Next, we systematically deciphered the mechanisms of drug actions and toxicities by analyzing the associations of drugs’ chemical features, biological features and their gene expression profiles from the TG-GATEs database.
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Identification of Promoter Regions in the Human Genome by Using a Retroviral Plasmid Library-Based Functional Reporter Gene Assa
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Methods Identification of Promoter Regions in the Human Genome by Using a Retroviral Plasmid Library-Based Functional Reporter Gene Assay Shirin Khambata-Ford,1,5 Yueyi Liu,2 Christopher Gleason,1 Mark Dickson,3 Russ B. Altman,2 Serafim Batzoglou,4 and Richard M. Myers1,3,6 1Department of Genetics, 2Stanford Medical Informatics, 3Stanford Human Genome Center, Stanford University School of Medicine, Stanford, California 94305, USA; 4Department of Computer Science, Stanford University, Stanford, California 94305, USA Attempts to identify regulatory sequences in the human genome have involved experimental and computational methods such as cross-species sequence comparisons and the detection of transcription factor binding-site motifs in coexpressed genes. Although these strategies provide information on which genomic regions are likely to be involved in gene regulation, they do not give information on their functions. We have developed a functional selection for promoter regions in the human genome that uses a retroviral plasmid library-based system. This approach enriches for and detects promoter function of isolated DNA fragments in an in vitro cell culture assay. By using this method, we have discovered likely promoters of known and predicted genes, as well as many other putative promoter regions based on the presence of features such as CpG islands. Comparison of sequences of 858 plasmid clones selected by this assay with the human genome draft sequence indicates that a significantly higher percentage of sequences align to the 500-bp segment upstream of the transcription start sites of known genes than would be expected from random genomic sequences.
    [Show full text]
  • 14Q13 Deletions FTNW
    14q13 deletions rarechromo.org 14q13 deletions A chromosome 14 deletion means that part of one of the body’s chromosomes (chromosome 14) has been lost or deleted. If the deleted material contains important genes, learning disability, developmental delay and health problems may occur. How serious these problems are depends on how much of the chromosome has been deleted, which genes have been lost and where precisely the deletion is. The features associated with 14q13 deletions vary from person to person, but are likely to include a degree of developmental delay, an unusually small or large head, a raised risk of medical problems and unusual facial features. Genes and chromosomes Our bodies are made up of billions of cells. Most of these cells contain a complete set of thousands of genes that act as instructions, controlling our growth, development and how our bodies work. Inside human cells there is a nucleus where the genes are carried on microscopically small, thread-like structures called chromosomes which are made up p arm p arm of DNA. p arm p arm Chromosomes come in pairs of different sizes and are numbered from largest to smallest, roughly according to their size, from number 1 to number 22. In addition to these so-called autosomal chromosomes there are the sex chromosomes, X and Y. So a human cell has 46 chromosomes: 23 inherited from the mother and 23 inherited from the father, making two sets of 23 chromosomes. A girl has two X chromosomes (XX) while a boy will have one X and one Y chromosome (XY).
    [Show full text]
  • Degruyter Chem Chem-2021-0032 347..357 ++
    Open Chemistry 2021; 19: 347–357 Research Article Belgin Sever, Mehlika Dilek Altıntop*, Yeliz Demir, Cüneyt Türkeş, Kaan Özbaş, Gülşen Akalın Çiftçi, Şükrü Beydemir*, Ahmet Özdemir A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity https://doi.org/10.1515/chem-2021-0032 received December 2, 2020; accepted February 9, 2021 1 Introduction Abstract: In an effort to identify potent aldose reductase Type 2 diabetes (T2D) is a chronic life-threatening disease (AR) inhibitors, 5-(arylidene)thiazolidine-2,4-diones (1–8), characterized by abnormally high blood glucose levels which were prepared by the solvent-free reaction of 2,4- resulting from impaired response of target tissues to thiazolidinedione with aromatic aldehydes in the presence insulin (insulin resistance) and/or progressively reduced in vitro of urea, were examined for their AR inhibitory function of pancreatic β cells. The global burden of T2D is -( - - - - activities and cytotoxicity. 5 2 Hydroxy 3 methylbenzyli increasing considerably, and therefore there is an urgent ) - - (3) dene thiazolidine 2,4 dione was the most potent AR need to develop safe and potent antidiabetic agents [1–5]. inhibitor in this series, exerting uncompetitive inhibition Polyol pathway is a two-step metabolic pathway K ± with a i value of 0.445 0.013 µM. The IC50 value of in which glucose is reduced to sorbitol, which is then 3 fi - compound for L929 mouse broblast cells was deter converted to fructose. The abnormally activated polyol mined as 8.9 ± 0.66 µM, pointing out its safety as an AR pathway has been reported to participate in the patho- inhibitor.
    [Show full text]
  • And URSPRUNG(1966)
    GENETICS OF OCTANOL DEHYDROGENASE IN DROSOPHILA METZIP+ SARAH BEDICHEK PIPKIN Homrd Uniuersity, Washington, D.C.20001 Received October 11, 1967 CTANOL dehydrogenase (ODH) was studied in Drosophila melanogaster first by URSPRUNGand LEONE(1965) and distinguished from alcohol de- hydrogenase by COURTRIGHT,IMBERSKI, and URSPRUNG(1966). The neotropical species Drosophila metzii is polymorphic for complex octanol dehydrogenase patterns which will be shown to depend on two distinct structural genes, ODH,, apparently homologous with the locus studied by COURTRIGHTet al. (1966), and ODH,, responsible for a more slowly migrating isozyme. The ODH loci are un- linked, and variants display unifactorial inheritance. The ODH molecule is con- sidered at least a dimer but probably a tetramer. Isozyme formation can involve combinations of polypeptides produced by either or both of the two structural genes. Genetic evidence will be presented indicating that egg or embryonic and imaginal ODH isozyme patterns depend on the same structural genes. MATERIALS AND METHODS Single flies were assayed in crude homogenates with 1-octanol as substrate, using the agar gel electrophoresis method, with formazan staining according to the method of DR.H. URSPRUNG (1x5). Modifications of the method for the present work included grinding of single flies in a drop of glass distilled water in specially prepared small homogenizers and allowing the electro- phoresis to proceed at 25Ov for forty minutes instead of half an hour. Enzyme assays for the genetic analysis were made on single females aged 4 to 6 days. The smaller males do not provide sufficient enzyme for reliable single fly analysis. Flies for experimental crosses were reared in pair matings on a medium of corn meal-Karo-Brewer’s yeast #2019 (Standard Brands).
    [Show full text]
  • Proquest Dissertations
    RICE UNIVERSITY Molecular Basis of Gene Dosage Sensitivity by Jianping Chen A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: Ariel Fernandez, Chair Karl F. Hasselmann Professor Department of Bioengineering Rice University rn'idtfP h.tQsJUW*- Michael W. Deem, John W. Cox Professor Department of Bioengineering Department of Physics and Astronomy Rice Universit ^engineering at Rice University Jiochemistry at Baylor College of Medicine Axxttig- «J^gb/uv Laura Segaton, T.N. Law Assistant Professor Chemical and Biomolecular Engineering Rice University HOUSTON, TEXAS JANUARY 2009 UMI Number: 3362141 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform 3362141 Copyright 2009 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Molecular Basis of Gene Dosage Sensitivity by JianpingChen Deviation of gene expression from normal levels has been associated with diseases. Both under- and overexpression of genes could lead to deleterious biological consequences. Dosage balance has been proposed to be a key issue of determining gene expression pheno- type.
    [Show full text]
  • Gene Expression in Buccal Keratinocytes with Emphasis on Carbonyl Metabolism
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden GENE EXPRESSION IN BUCCAL KERATINOCYTES WITH EMPHASIS ON CARBONYL METABOLISM Claudia A. Staab Stockholm 2008 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by [name of printer] © Claudia A. Staab, 2008 ISBN 978-91-7409-127-4 Printed by 2008 Gårdsvägen 4, 169 70 Solna Une sortie, c'est une entrée que l'on prend dans l'autre sens. Boris Vian ABSTRACT The inner lining of the cheek, the buccal mucosa, is a target for air-borne, dietary and tobacco usage-derived carcinogens, but also interesting from a drug delivery point of view. Cancer arising in the buccal epithelium, buccal squamous cell carcinoma (BSCC), often diagnosed at a late disease stage, is highly aggressive and recurrent, emphasizing the need for novel approaches in diagnosis and therapy. An in vitro model for human buccal carcinogenesis consisting of normal buccal keratinocytes (NBK) and two transformed cell lines of buccal origin was applied to explore mechanisms of buccal carcinogenesis, tumor marker and drug target expression. Two-dimensional gel electrophoresis, DNA microarray analysis, and the application of three bioinformatics programs for data mining allowed for the identification of multiple established and potential novel markers for BSCC, including tumor promoter/suppressor genes. Furthermore, post-confluent culture of NBK in absence and presence of fetal bovine serum was successfully used to induce terminal squamous differentiation (TSD) to various extents and thus enrich for different strata of the epithelium. Here, expression and activity of carbonyl-metabolizing enzymes (CMEs) were assessed in view of their multiple roles in phase I biotransformation.
    [Show full text]
  • Dehydrogenase Classes
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 4980-4984, May 1994 Biochemistry Fundamental molecular differences between alcohol dehydrogenase classes (Drosophila octano dehydrogenase/class m alcohol dehydrogenase/mo ur patterns/zinc enyme famy) OLLE DANIELSSON*, SILVIA ATRIANt, TERESA LUQUEt, LARS HJELMQVIST*, ROSER GONZALEZ-DUARTEt, AND HANS J6RNVALL*f *Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden; tCenter for Biotechnology, Karolinska Institutet, S-141 86 Huddinge, Sweden; and tDepartment of Genetics, University of Barcelona, E-08071 Barcelona, Spain Communicated by Sune Bergstrom, January 18, 1994 ABSTRACT Two types of alcohol dehydrogenase in sepa- ary patterns, with class III being "constant" and class I rate protein families are the "medium-chain" zinc enzymes "variable" (10), result in a consistent picture of the enzyme (including the classical liver and yeast forms) and the "short- system and place the classes of medium-chain alcohol dehy- chain" enzymes (including the insect form). Although the drogenases as separate enzymes in the cellular metabolism. medium-chain family has been characterized in prokaryotes Similarly, another protein family, short-chain dehydroge- and many eukaryotes (fungi, plants, cephalopods, and verte- nases, has also evolved into a family comprising many brates), insects have seemed to possess only the short-chain different enzyme activities, including an alcohol dehydroge- enzyme. We have now also characterized a medium-chain nase (11). This form operates by means of a completely alcohol dehydrogenase in Drosophila. The enzyme is identical different catalytic mechanism and is related to mammalian to insect octanol dehydrogenase. It Is a typical class m alcohol prostaglandin dehydrogenases/carbonyl reductase (12).
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Identification of Biomarkers of Metastatic Disease in Uveal
    Identification of biomarkers of metastatic disease in uveal melanoma using proteomic analyses Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy Martina Angi June 2015 To Mario, the wind beneath my wings 2 Acknowledgments First and foremost, I would like to acknowledge my primary supervisor, Prof. Sarah Coupland, for encouraging me to undergo a PhD and for supporting me in this long journey. I am truly grateful to Dr Helen Kalirai for being the person I could always turn to, for a word of advice on cell culture as much as on parenting skills. I would also like to acknowledge Prof. Bertil Damato for being an inspiration and a mentor; and Dr Sarah Lake and Dr Joseph Slupsky for their precious advice. I would like to thank Dawn, Haleh, Fidan and Fatima for becoming my family away from home, and the other members of the LOORG for the fruitful discussions and lovely cakes. I would like to acknowledge Prof. Heinrich Heimann and the clinical team at LOOC, especially Sisters Hebbar, Johnston, Hachuela and Kaye, for their admirable dedication to UM patients and for their invaluable support to clinical research. I would also like to thank the members of staff in St Paul’s theatre and Simon Biddolph and Anna Ikin in Pathology for their precious help in sample collection. I am grateful to Dr Rosalind Jenkins who guided my first steps in the mysterious word of proteomics, and to Dr Deb Simpsons and Prof. Rob Beynon for showing me its beauty.
    [Show full text]