Structural Pattern
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design Pattern Interview Questions
DDEESSIIGGNN PPAATTTTEERRNN -- IINNTTEERRVVIIEEWW QQUUEESSTTIIOONNSS http://www.tutorialspoint.com/design_pattern/design_pattern_interview_questions.htm Copyright © tutorialspoint.com Dear readers, these Design Pattern Interview Questions have been designed specially to get you acquainted with the nature of questions you may encounter during your interview for the subject of Design Pattern. As per my experience good interviewers hardly plan to ask any particular question during your interview, normally questions start with some basic concept of the subject and later they continue based on further discussion and what you answer: What are Design Patterns? Design patterns represent the best practices used by experienced object-oriented software developers. Design patterns are solutions to general problems that software developers faced during software development. These solutions were obtained by trial and error by numerous software developers over quite a substantial period of time. What is Gang of Four GOF? In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated the concept of Design Pattern in Software development. These authors are collectively known as Gang of Four GOF. Name types of Design Patterns? Design patterns can be classified in three categories: Creational, Structural and Behavioral patterns. Creational Patterns - These design patterns provide a way to create objects while hiding the creation logic, rather than instantiating objects directly using new opreator. This gives program more flexibility in deciding which objects need to be created for a given use case. Structural Patterns - These design patterns concern class and object composition. Concept of inheritance is used to compose interfaces and define ways to compose objects to obtain new functionalities. -
Automating Testing with Autofixture, Xunit.Net & Specflow
Design Patterns Michael Heitland Oct 2015 Creational Patterns • Abstract Factory • Builder • Factory Method • Object Pool* • Prototype • Simple Factory* • Singleton (* this pattern got added later by others) Structural Patterns ● Adapter ● Bridge ● Composite ● Decorator ● Facade ● Flyweight ● Proxy Behavioural Patterns 1 ● Chain of Responsibility ● Command ● Interpreter ● Iterator ● Mediator ● Memento Behavioural Patterns 2 ● Null Object * ● Observer ● State ● Strategy ● Template Method ● Visitor Initial Acronym Concept Single responsibility principle: A class should have only a single responsibility (i.e. only one potential change in the S SRP software's specification should be able to affect the specification of the class) Open/closed principle: “Software entities … should be open O OCP for extension, but closed for modification.” Liskov substitution principle: “Objects in a program should be L LSP replaceable with instances of their subtypes without altering the correctness of that program.” See also design by contract. Interface segregation principle: “Many client-specific I ISP interfaces are better than one general-purpose interface.”[8] Dependency inversion principle: One should “Depend upon D DIP Abstractions. Do not depend upon concretions.”[8] Creational Patterns Simple Factory* Encapsulating object creation. Clients will use object interfaces. Abstract Factory Provide an interface for creating families of related or dependent objects without specifying their concrete classes. Inject the factory into the object. Dependency Inversion Principle Depend upon abstractions. Do not depend upon concrete classes. Our high-level components should not depend on our low-level components; rather, they should both depend on abstractions. Builder Separate the construction of a complex object from its implementation so that the two can vary independently. The same construction process can create different representations. -
(MVC) Design Pattern Untuk Aplikasi Perangkat Bergerak Berbasis Java
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diponegoro University Institutional Repository Model-View-Controller (MVC) Design Pattern Untuk Aplikasi Perangkat Bergerak Berbasis Java Panji Wisnu Wirawan Program Studi Teknik Informatika, Universitas Diponegoro [email protected] Abstrak Design pattern merupakan salah satu teknik mendesain komponen perangkat lunak yang bisa digunakan kembali. MVC design pattern merupakan design pattern untuk komponen perangkat lunak yang memisahkan secara tegas antara model data, tampilan, dan kendali perangkat lunak. Artikel ini akan membahas MVC design pattern disertai kesesuaiannya dengan aplikasi perangkat bergerak berbasis Java. Bagian akhir artikel ini menunjukkan bagaimana MVC design pattern untuk aplikasi bergerak berbasis Java. Kata Kunci : MVC, design pattern , aplikasi perangkat bergerak berbasis Java ulang sehingga dapat meminimalkan usaha 1. Pendahuluan pengembangan aplikasi perangkat bergerak. Pada umumnya, aplikasi perangkat bergerak menggunakan Komponen perangkat lunak sudah semestinya GUI. Penggunaan MVC diharapkan bermanfaat untuk didesain dan diimplementasikan sehingga bisa pembuatan komponen perangkat lunak untuk aplikasi digunakan ulang ( reused ) pada perangkat lunak yang bergerak yang bisa digunakan ulang. [6] lain . Sebagai contoh penggunaan komponen perangkat lunak yang dapat digunakan ulang adalah Salah satu penelitian mengenai design pattern penggunaan text box , drop down menu dan untuk aplikasi perangkat bergerak berbasis Java telah sebagainya. dilakukan oleh Narsoo dan Mohamudally (2008). Narsoo dan Mohamudally (2008) melakukan Contoh lain dari komponen perangkat lunak identifikasi design pattern untuk mobile services adalah pola-pola tertentu untuk menyelesaikan menggunakan Java 2 Mobile Edition (J2ME). Mobile masalah yang disebut sebagai design pattern . Pola- services tersebut termasuk dalam behavioral pattern pola tersebut akan tetap sama untuk aplikasi yang yaitu add , edit , erase dan search . -
Designpatternsphp Documentation Release 1.0
DesignPatternsPHP Documentation Release 1.0 Dominik Liebler and contributors Jul 18, 2021 Contents 1 Patterns 3 1.1 Creational................................................3 1.1.1 Abstract Factory........................................3 1.1.2 Builder.............................................8 1.1.3 Factory Method......................................... 13 1.1.4 Pool............................................... 18 1.1.5 Prototype............................................ 21 1.1.6 Simple Factory......................................... 24 1.1.7 Singleton............................................ 26 1.1.8 Static Factory.......................................... 28 1.2 Structural................................................. 30 1.2.1 Adapter / Wrapper....................................... 31 1.2.2 Bridge.............................................. 35 1.2.3 Composite............................................ 39 1.2.4 Data Mapper.......................................... 42 1.2.5 Decorator............................................ 46 1.2.6 Dependency Injection...................................... 50 1.2.7 Facade.............................................. 53 1.2.8 Fluent Interface......................................... 56 1.2.9 Flyweight............................................ 59 1.2.10 Proxy.............................................. 62 1.2.11 Registry............................................. 66 1.3 Behavioral................................................ 69 1.3.1 Chain Of Responsibilities................................... -
Principles of Programming Languages
David Liu Principles of Programming Languages Lecture Notes for CSC324 (Version 2.1) Department of Computer Science University of Toronto principles of programming languages 3 Many thanks to Alexander Biggs, Peter Chen, Rohan Das, Ozan Erdem, Itai David Hass, Hengwei Guo, Kasra Kyanzadeh, Jasmin Lantos, Jason Mai, Sina Rezaeizadeh, Ian Stewart-Binks, Ivan Topolcic, Anthony Vandikas, Lisa Zhang, and many anonymous students for their helpful comments and error-spotting in earlier versions of these notes. Dan Zingaro made substantial contributions to this version of the notes. Contents Prelude: The Study of Programming Languages 7 Programs and programming languages 7 Models of computation 11 A paradigm shift in you 14 Course overview 15 1 Functional Programming: Theory and Practice 17 The baseline: “universal” built-ins 18 Function expressions 18 Function application 19 Function purity 21 Name bindings 22 Lists and structural recursion 26 Pattern-matching 28 Higher-order functions 35 Programming with abstract syntax trees 42 Undefined programs and evaluation order 44 Lexical closures 50 Summary 56 6 david liu 2 Macros, Objects, and Backtracking 57 Object-oriented programming: a re-introduction 58 Pattern-based macros 61 Objects revisited 74 The problem of self 78 Manipulating control flow I: streams 83 Manipulating control flow II: the ambiguous operator -< 87 Continuations 90 Using continuations in -< 93 Using choices as subexpressions 94 Branching choices 98 Towards declarative programming 101 3 Type systems 109 Describing type systems 110 -
TH`ESE DE DOCTORAT Software Engineering Techniques For
THESE` DE DOCTORAT de L’UNIVERSITE´ DE NICE – SOPHIA ANTIPOLIS Sp´ecialit´e SYSTEMES` INFORMATIQUES pr´esent´ee par Matthias Jung pour obtenir le grade de DOCTEUR de l’UNIVERSITE´ DE NICE – SOPHIA ANTIPOLIS Sujet de la th`ese: Software Engineering Techniques for Support of Communication Protocol Implementation Soutenu le 3 Octobre 2000 devant le jury compos´e de: Pr´esident Dr. Walid Dabbous Directeur de Recherche, INRIA Rapporteurs Dr. Wolfgang Effelsberg Professeur, Universit´e de Mannheim Dr. B´eatrice Paillassa Maˆıtre de Conf´erence, ENSEEIHT Membre Invit´e Dr. Vincent Roca Charg´e de Recherche, INRIA Directeur de Th`ese Dr. Ernst W. Biersack Professeur, Institut Eur´ecom ii Acknowledgements Thanks to my supervisor Ernst Biersack for his trust and his honesty, his encouragement, and the many things I’ve learned during the last three years. Thanks to Stefan B¨ocking and the people from Siemens Research (ZT IK2) for their financial support, which gave me the opportunity to follow my PhD studies at Eur´ecom. Thanks to the members of my jury – Walid Dabbous, Wolfgang Effelsberg, B´eatrice Paillassa, and Vincent Roca – for the time they spent to read and comment my work. Thanks to Didier Loisel and David Tr´emouillac for their permanent cooperation and competent help concerning hardware and software administration. Thanks to Evelyne Biersack, Morsy Cheikhrouhou, Pierre Conti, and Yves Roudier for reading and correcting the french part of my dissertation. Thanks to the btroup members and to all people at Eur´ecom who contributed to this unique atmosphere of amity and inspiration. Thanks to Sergio for his open ear and for never running out of cookies. -
The Use of Design Pattern on Informatics Engineering Students Thesis
Advances in Intelligent Systems Research (AISR), volume 157 Mathematics, Informatics, Science, and Education International Conference (MISEIC 2018) The Use of Design Pattern on Informatics Engineering Students Thesis Alifah Diantebes Aindra, Aim Abdulkarim Eki Nugraha Oktarica Pratiwi Suryoningtyas, Department of Civil Education Department of Computer Science and Aji Prasetya Wibawa Universitas Pendidikan Indonesia Universitas Pendidikan Indonesia Department of Vocational Education Bandung, Indonesia Bandung, Indonesia Universitas Negeri Malang [email protected] [email protected] Malang, Indonesia [email protected], [email protected], [email protected] Abstract— University students should write a thesis to get the process of software development to reduce the development their undergraduate (Bachelor) degree is. Most Informatics process so that students can complete their thesis quickly. By engineering students of the Electrical Engineering reducing the development time of a software, it can also reduce Department in Universitas Negeri Malang use research and the costs during the production process [1]. One of these development method for their thesis. There are many solutions is to use design patterns for the development. The use solutions or methods in software engineering which aim to of a design pattern can reduce the development time, facilitate develop a good quality software. One of these solutions is communication between the development team, written source using design patterns. Several benefits of using the design code becomes more flexible and easy to reuse [2]. patterns are; decreasing time of production, having a Unlike the above mentioned, to implement or adapt the reusable and flexible code, and making people easier to design pattern, a proper and good preparation from the understand. -
Resilience Design Patterns a Structured Approach to Resilience at Extreme Scale - Version 1.0
ORNL/TM-2016/687 Resilience Design Patterns A Structured Approach to Resilience at Extreme Scale - version 1.0 Saurabh Hukerikar Christian Engelmann Approved for public release. October 2016 Distribution is unlimited. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website: http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Website: http://classic.ntis.gov/ Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex- change representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Website: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal lia- bility or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep- resents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not nec- essarily constitute or imply its endorsement, recommendation, or fa- voring by the United States Government or any agency thereof. -
Design Pattern- Structural Pattern 2015
Design Pattern- Structural pattern 2015 Adapter Intent: Change the interface of a class into another interface which is expected by the client. Also Know As: Wrapper Motivation Structure (Class) Structure (Object) Applicability • Use an existing class whose interface does not match the requirement • Create a reusable class though the interfaces are not necessary compatible with callers • Want to use several existing subclasses, but it is impractical to subclass everyone. (Object Adapter Only) Participants Target (Shape) 1 | P a g e Almas Ansari Design Pattern- Structural pattern 2015 defines the domain-specific interface that Client uses. Client (DrawingEditor) collaborates with objects conforming to the Target interface. Adaptee (TextView) defines an existing interface that needs adapting. Adapter (TextShape) adapts the interface of Adaptee to the Target interface. Collaborations Clients call operations on an Adapter instance. In turn, the adapter calls Adaptee operations that carry out the request. Consequences Here are other issues to consider when using the Adapter pattern: 1. How much adapting does Adapter do? Adapters vary in the amount of work they do to adapt Adaptee to the Target interface. 2. Pluggable adapters. A class is more reusable when you minimize the assumptions other classes must make to use it. 3. Using two-way adapters to provide transparency. A potential problem with adapters is that they aren't transparent to all clients. Implementation 1. Implementing class adapters in C++. In a C++ implementation of a class adapter, Adapter would inherit publicly from Target and privately from Adaptee. Thus Adapter would be a subtype of Target but not of Adaptee. 2. -
UNIT-I TUTORIAL QUESTIONS 1. Explain the Concept of Design Pattern? 2
UNIT-I TUTORIAL QUESTIONS 1. Explain the concept of design pattern? 2. Explain the advantages and disadvantages of structural patterns? 3. Explain proxy design pattern in detail? 4. Explain the concept of design pattern relationship? 5. Explain the state pattern in detail? UNIT-I UNIVERSITY QUESTIONS 1. Explain the template of a design pattern? 2. Explain the state pattern in detail? 3. Explain proxy design pattern in detail? 4. Explain the features of structural pattern? 5. Explain the concept of design pattern relationship? UNIT-I DESCRIPTIVE QUESTIONS 1. Explain the template of a design pattern? 2. Explain the state pattern in detail? 3. Explain proxy design pattern in detail? 4. Explain the features of structural pattern? 5. Explain the concept of design pattern relationship? UNIT-I ASSIGNMENT QUESTIONS 1. Explain the template of a design pattern? 2. Explain the state pattern in detail? 3. Explain proxy design pattern in detail? 4. Explain the features of structural pattern? 5. Explain the concept of design pattern relationship? UNIT-I OBJECTIVE QUESTIONS 1. A pattern in general refers to layout 2. A Design pattern can be considered as Reusable solution 3. The concept of design pattern was introduced by Christopher Alexander 4. Essential elements of D.P are Pattern Name,Problem,Solution,Consequences 5. Catalog consists of Abstract factory,Adapter,Bridge 6. Creation Patterns are Factory method, Builder, Prototype 7. Structural Patterns are Factory method, Builder, Prototype 8. Design Patterns specify Object implementation 9. Design Patterns specify Object Interfaces 10. Design Patterns specify Appropriate Objects UNIT-I SEMINAR TOPICS 1. Template of D.P 2. -
Java Design Patterns I
Java Design Patterns i Java Design Patterns Java Design Patterns ii Contents 1 Introduction to Design Patterns 1 1.1 Introduction......................................................1 1.2 What are Design Patterns...............................................1 1.3 Why use them.....................................................2 1.4 How to select and use one...............................................2 1.5 Categorization of patterns...............................................3 1.5.1 Creational patterns..............................................3 1.5.2 Structural patterns..............................................3 1.5.3 Behavior patterns...............................................3 2 Adapter Design Pattern 5 2.1 Adapter Pattern....................................................5 2.2 An Adapter to rescue.................................................6 2.3 Solution to the problem................................................7 2.4 Class Adapter..................................................... 11 2.5 When to use Adapter Pattern............................................. 12 2.6 Download the Source Code.............................................. 12 3 Facade Design Pattern 13 3.1 Introduction...................................................... 13 3.2 What is the Facade Pattern.............................................. 13 3.3 Solution to the problem................................................ 14 3.4 Use of the Facade Pattern............................................... 16 3.5 Download the Source Code............................................. -
Skin Vs. Guts: Introducing Design Patterns in the MIS Curriculum Elizabeth Towell and John Towell Carroll College, Waukesha, WI, USA
Journal of Information Technology Education Volume 1 No. 4, 2002 Skin vs. Guts: Introducing Design Patterns in the MIS Curriculum Elizabeth Towell and John Towell Carroll College, Waukesha, WI, USA [email protected] [email protected] Executive Summary Significant evidence suggests that there is increasing demand for information technology oriented stu- dents who have exposure to Object-Oriented (OO) methodologies and who have knowledge of the Uni- fied Modeling Language (UML). Object-oriented development has moved into the mainstream as the value of reusable program modules is becoming more evident. Building blocks such as software com- ponents and application frameworks allow organizations to bring products to market faster and to adapt to changes more quickly. When only one analysis and design course is required, the study of object-oriented analysis and design is often minimal or left out of the Management Information Systems curriculum. This paper argues for an increased emphasis on object-oriented techniques in the introductory Systems Analysis and Design course. Specifically, it provides guidance for faculty who are considering adding object-orientation to a systems analysis and design course where existing content leaves little time for new topics. In particular, the authors recommend the introduction of two successful, generalized design patterns in the context of adaptation of a software development framework. Where time is limited, coverage of such recurring software problems cannot be comprehensive so it is proposed that students explore two design patterns in depth as opposed to a cursory review of more patterns. Students must first learn or review the OO vocabulary including terms such as classes, inheritance, and aggregation so that the ap- propriate term can be used to discuss the UML relationships among the object model components.