AN UPDATE on COLOR in GEMS. PART 2: COLORS INVOLVING MULTIPLE ATOMS and COLOR CENTERS by Emmunuel Fritsch and George R

Total Page:16

File Type:pdf, Size:1020Kb

AN UPDATE on COLOR in GEMS. PART 2: COLORS INVOLVING MULTIPLE ATOMS and COLOR CENTERS by Emmunuel Fritsch and George R AN UPDATE ON COLOR IN GEMS. PART 2: COLORS INVOLVING MULTIPLE ATOMS AND COLOR CENTERS By Emmunuel Fritsch and George R. Rossinun This is the second part in a three-part se- n the first part of this series (Fritsch and Rossman, 1987)) ries on the origin of color in gem male- I we reviewed how absorption of light by a dispersed metal rials. This article discusses colors pro- ion such as chromium (Cr3+)can produce color in a gem duced by (1) processes that involve multi- material such as ruby. However, color in gems is also ple atoms (e.g., blue sapphire, organic commonly produced by a variety of processes that involve products), and (2) a varieiy of defect the combined presence of two or more ions (e.g., charge- stnlctures that are generally created by irrtjdiation (ntjtr~mlor artificial), 1znow1 transfer processes), or by irradiation sometimes combined collective4y ps "color centers" (e.g., green with heating (the format'ion of a "color center"). In this diamond). ; article, we will describe and explain these mechanisms through a variety of examples, some of which are illus- trated in figure 1. The reader who desires more information about the origin of color in gem materials will find the reviews by Nassau (1975)) Loeffler and Burns (1976), Marfunin (1979),and Fritsch (1985)particularly helpful. It should be noted that in most cases, color-causing absorp- tion bands are so broad that they cannot be well resolved with a hand spectroscope. If visible, they usually appear as a broad smudge or as a gradual darkening toward one end of the visible range. PROCESSES INVOLVING MULTIPLE ATOMS Charge Transfer: When an Electron Jumps from One Atom ABOUT THE AUTHORS to Another. Color is caused by dispersed metal ions when Dr. Fritsch is research scientisl at the Gernologi- electrons undergo transitions between atomic orbitals cal Inslitute of America, Santa Monica, California. confined to a single ion (seepart 1 of this series, Fritsch and Dr. Rossrnan is professor of mineralogy a1 the California Institute of Technology, Pasadena, Cali- Rossman, 1987). During this transition, the electrons fornia. never leave the central atom. There are, however, a number Acknowledgments: E.F. wishes lo thank Professor of different ways that electrons can jump from one atom to Georges Calas, of the University of Paris VII, for another. When this happens, spectacular colorations may his help and encouragement in writing lhe original result. One of these processes is called charge transfer French version of th~sarticle. Special acknowl- edgment is given to Pat Gray for lyp~ngthe manu- because it can be described in simple terms as a mecha- scri,ot and improv~ngthe translation. Particular ap- nism that transfers a negative charge (i.e., an electron) from preciation is due to Laurel Barllelt and John Hum- one atom to another. me1 for their conslructive comments on this arti- cle. Jan Newel1 and Peter Johnston drew lhe line ~llustralions. When ~7nElectron Visits Its Nearest Neighbor: Oxygen + O 7988 Gemologica! Institute of America Metal Charge Transfer. Heliodor, the golden variety of Color in Gems, Part 2 GEMS & GEMOLOGY Spring 1988 3 Figrire I. Colors in gem materials can be caused by a number of different processes. This article concentrates on colors caused by processes in- volving multiple atoms and color centers. Exam- ples of such colorations are illustrated here (see tables 1 and 2 for the specific origin of color for each stone). Clockwise, from top right: pink fluo- rite, violet scapofite, greenis11 yellow tour- maline, andalusite, ame- thyst, crocoite, citrine, and yellow fluorite, with blue liyanite In the cen- ter. Stones are from the I -, GIA collection or coilr- , ..' , --- _ . 4, - Y.4. tesy of Pete Flusser, ..C - .- +-a- Overland Gems, Inc. .. h-,% ... .... - Photo 0 Tino Hammid. a-, .. .-- l - - beryl (seefigure 2),is colored by Fe3+ as it interacts in the beryl structure. The color results from light with other atoms in the beryl structure. The absorbed through the transfer of electrons from the transitions confined to the Fe"+ ion absorb in the oxygen ions to the iron ion. This color can also be blue and violet portion of the spectrum; they are induced artificially by the irradiation of blue beryl very weak and malze only a minor contribution to (see Fritsch and Rossman, 1987). the color. The deep yellow of heliodor is caused Usually oxygen + metal charge-transfer ab- mainly by an extremely strong absorption cen- sorptions are centered in the near ultraviolet and tered in the ultraviolet that extends into the blue are broad enough to extend into the blue end of the end of the visible spectrum and absorbs violet and visible spectrum, producing yellow to orange to blue (Loeffler and Burns, 1976). This ultraviolet brown colors. Their energy is fairly independent of absorption is due not to Fe3 + alone but rather to an the nature of the host mineral. The 02-+Fe3+ interaction between Fe3 + and its oxygen neighbors absorption described above for beryl is found at 4 Color in Gems, Part 2 GEMS & GEMOLOGY Spring 1988 transition is 100 to 1,000 times stronger than that resulting from an internal transition confined to the isolated ion (Mattson and Rossman, 1987a, 1987b). Consequently, charge-transfer colors are more intense than those caused by dispersed inetal ions. Of course, the intensity of the color also depends on the extent to which the charge-transfer absorption occurs in the visible portion of the spectrum. When an Electron Visits Its Next-Nearest Neigh- bor: Intervalence Charge Transfer. In some cases, an electron can travel further than one ion away, Figure 2. Some yellow sapl111ire.s (23.78 ct, left) such that two inetal ions separated by an oxygen and all golden beryls (heliodor, 9.94 ct, right) atom call actually exchange electrons, too. This owe their color to 0'-+Fe3' charge transfer. process can strongly influence the color of a gem. Photo by Shone McClure. When such a transition talzes place between two different oxidation states (e.g., Fe" and Fe3+),it is about the same energy- that is, the same region of called an intervalence charge-transfer (IVCT)tran- the spectrum-in corundum (Tippins, 1970). sition. Therefore, it contributes a similar strong yellow- Because of the natural abundance of iron, orange color to sapphires, despite the fact that the charge transfer is con~n~onlyobserved between details of the coordination environment are quite Fez+ and Fe" + A~populargemstone colored by this different,for the isolated ion in these two minerals type of lVCT is darlzer blue aquamarine, like the (in contrast, see Fritsch and Rossman, 1987, for the material from Coronel Murta (Brazil) and difference'in color produced by chromium [Cr3+] Tongafeno (Malagasy Republic). As we have seen in beryl [emerald]and corundum [ruby]). already, the presence of Fe"+ induces the absorp- The center of the oxygen 3 metal ion charge- tion of at least part of the violet, through 02-3 transfer absorption band moves from the ultravio- Fe3+ charge transfer. But when Fez+ is also present let toward the visible region as the positive charge in the adjacent site, the Fez+ +Fe3+ IVCT strongly of the central metal ion increases. 02-+Fez+ absorbs in the red end of the spectrum (Goldman et charge transfer is centered well into the ultraviolet al., 1978).As the violet is already suppressed, this and has minimal effect on color, whereas 02-+ leaves a transmission window in the blue. Fe3+ charge transfer is centered at the edge of the When there is much more Fe3 + than Fez + , the ultraviolet, and extends into the visible region, 02- +Fe3 + charge transfer also absorbs part of the generally causing yellow to brown hues. Finally, blue and results in a more greenish color. Heat 02- +Fe4+ transitions absorb light in the middle treatment in a reducing atmosphere is used to of the visible region, giving amethyst, for example, change part of the Fe3+ to Fez+ (Nassau, 1984). its purple color (Cox, 1977). This moves the transmission window back into Even ions that are not lilzely to generate color the blue, and produces a more saleable stone. by themselves can do so with oxygen + metal Intervalence charge transfers also occur be- charge transfer. For instance, the chromate group tween metal ions of different chemical elements. (Cr6+O4)gives the mineral crocoite its bright Such is the case for the FeZ++Ti4+ charge transfer orange-red color (see figure 1). The oxygen ions that gives sapphire its blue color (figure 3). The transfer some of their electrons to the chromium heat treatment of near-colorless "geuda" sapphires ion in such a way that transitions absorbing in the produces blue stones because naturally occurring near ultraviolet and in part of the violet and blue inclusions of rutile and spinel in the corundum are possible (Loeffler and Burns, 1976). dissolve at high temperatures. Fe and Ti from the Transitions associated with a single metal ion inclusions are released and, through random diffu- have a much lower probability of occurring than do sion, form pairs of Fez+ and Ti4+ ions which charge-transfer transitions. In the case of Fe3+, the interact through Fe2++Ti4+ IVCT to yield the absorption resulting from one charge-transfer blue coloration (Harder and Schneider, 1986). The Color in Gems, Part 2 GEMS 8: GEMOLOGY Spring 1988 5 As one can appreciate from the former exam- ples, charge-transfer processes generally create a strong pleochroism. To understand why the ab- sorption is more intense in one direction than the other, it is necessary to know the exact location of the ions involved (see, e.g., figures 4 and 5).
Recommended publications
  • Color Change of Gemstones by Exposure to Gamma Rays
    2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 COLOR CHANGE OF GEMSTONES BY EXPOSURE TO GAMMA RAYS Giovanna L. C. de Lima1 and Fernando S. Lameiras2 1 Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) Campus da UFMG - Pampulha Av. Antônio Carlos 6627 31270-901 Belo Horizonte, MG [email protected] 2 Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) Campus da UFMG - Pampulha Av. Antônio Carlos 6627 31270-901 Belo Horizonte, MG [email protected] ABSTRACT A gem is appreciated by collectors and, when polished, widely used for jewelry manufacturing. For example, when quartz naturally or artificially acquires a color it becomes a gemstone (smoky quartz, morion, citrine, amethyst, or prasyolite). The presence of chromophore elements in a quartz sample was analysed by Fourier transform infrared spectrometry (FTIR). With a semi-quantitative analysis of the absorption FTIR spectra, it was possible to predict if colorless quartz has the potential to develop color when exposed to ionizing radiation and heat. Specific absorption bands show the presence of chromophore elements in quartz such as aluminum, iron, hydrogen, sodium, or lithium. Considering the ratio of the heights of the absorption bands of these elements, it was possible to predict the color quartz can develop. Samples of irradiated dark and light violet fluorites were analyzed by FTIR and energy-dispersive X-rays spectroscopy. The light violet samples has higher content of calcium relative to fluorine, as well higher content of hydroxyl, probably replacing fluorine in crystal lattice.
    [Show full text]
  • CORDIERITE-GARNET GNEISS and ASSOCIATED MICRO- CLINE-RICH PEGMATITE at STURBRIDGE, I,{ASSA- CHUSETTS and UNION, CONNECTICUTI Fnor B.Cnrbn, [
    THE AMERICAN MINERALOGIST, VOL 47, IVLY AUGUST, 1962 CORDIERITE-GARNET GNEISS AND ASSOCIATED MICRO- CLINE-RICH PEGMATITE AT STURBRIDGE, I,{ASSA- CHUSETTS AND UNION, CONNECTICUTI Fnor B.cnrBn, [/. S. GeologicalSurttey, Washington,D. C. Aesrnacr Gneiss of argillaceous composition at Sturbridge, Massachusetts, and at Union, Connecticut, 10 miles to the south, consists of the assemblagebiotite-cordierite-garnet- magnetite-microcline-quartz-plagioclase-sillimanite. The conclusion is made that this assemblagedoes not violate the phase rule. The cordierite contains 32 mole per cent of Fe- end member, the biotite is aluminous and its ratio MgO: (MgOf I'eO) is 0.54, and the gar- net is alm6e5 pyr26.agro2.espe1.2.Lenses of microcline-quartz pegmatite are intimately as- sociated with the gneissl some are concordant, others cut acrossthe foliation and banding of the gneiss. The pegmatites also contain small amounts of biotite, cordierite, garnet, graphite, plagioclase, and sillimanite; each mineral is similar in optical properties to the corresponding one in the gneiss. It is suggestedthat muscovite was a former constituent of the gneiss at a lower grade of metamorphism, and that it decomposedwith increasing metamorphism, and reacted with quartz to form siliimanite in situ and at lerst part of the microcline of the gneiss and pegmatites These rocks are compared with similar rocks of Fennoscandia and Canada. INtnouucrroN Cordierite-garnet-sillimanitegneisses that contain microcline-quartz pegmatiteare found in Sturbridge,Massachusetts, and Union, Connecti- cut. The locality (Fig. 1) at Sturbridgeis on the south sideof the \{assa- chusettsTurnpike at the overpassof the New Boston Road; this is about 1 mile west of the interchangeof Route 15 with the Turnpike.
    [Show full text]
  • Mount Apatite Park, Auburn, Maine
    Mount Apatite Park is a 325-acre wooded park located in the western portion of the city. The park offers a wide variety of recreational opportunities not often found in municipal park settings. Rock hounds have known about this area for over 150 years, when the first discoveries of gem-quality tourmaline were found there. Since then, the area has experienced a great deal of mineral exploration, both commercial and amateur. Today amateurs may still search the mine tailings for apatite, tourmaline, and quartz specimens (special rules apply). The park features approximately four miles of trails for non-motorized uses such as hiking, mountain biking, cross-country skiing, and snowshoeing. The Andy Valley Sno Gypsies also maintain a snowmobile trailhead within the park, which links to miles of regional snowmobile trails.The park is open from dawn until dusk year-round. As with all municipal parks, hunting is not allowed within park boundaries. Park brochures, which include a trail map, park rules, and other park information, are available at the Auburn Parks & Recreation Department office, Monday through Friday, 8a.m.-4:30p.m. Mount Apatite Park, Auburn, Maine Significance The Mt. Apatite quarries were important producers of commercial feldspar in the early 1900's. They played a prominent part in Maine's mining history. During the course of this mining activity, rare minerals and colorful crystals of green and pink tourmaline were found in both the Greenlaw and Maine Feldspar Quarries. These quarries also produced many large crystals of transparent smoky quartz. The complexity of the mineral assemblage at Mt.
    [Show full text]
  • Near Vermilion Sands: the Context and Date of Composition of an Abandoned Literary Draft by J. G. Ballard
    Near Vermilion Sands: The Context and Date of Composition of an Abandoned Literary Draft by J. G. Ballard Chris Beckett ‘We had entered an inflamed landscape’1 When Raine Channing – ‘sometime international model and epitome of eternal youthfulness’2 – wanders into ‘Topless in Gaza’, a bio-fabric boutique in Vermilion Sands, and remarks that ‘Nothing in Vermilion Sands ever changes’, she is uttering a general truth about the fantastic dystopian world that J. G. Ballard draws and re-draws in his collection of stories set in and around the tired, flamboyant desert resort, a resort where traumas flower and sonic sculptures run to seed.3 ‘It’s a good place to come back to,’4 she casually continues. But, like many of the female protagonists in these stories – each a femme fatale – she is a captive of her past: ‘She had come back to Lagoon West to make a beginning, and instead found that events repeated themselves.’5 Raine has murdered her ‘confidant and impresario, the brilliant couturier and designer of the first bio-fabric fashions, Gavin Kaiser’.6 Kaiser has been killed – with grim, pantomime karma – by a constricting gold lamé shirt of his own design: ‘Justice in a way, the tailor killed by his own cloth.’7 But Kaiser’s death has not resolved her trauma. Raine is a victim herself, a victim of serial plastic surgery, caught as a teenager in Kaiser’s doomed search for perpetual gamin youth: ‘he kept me at fifteen,’ she says, ‘but not because of the fashion-modelling. He wanted me for ever when I first loved him.’8 She hopes to find in Vermilion Sands, in its localized curvature of time and space, the parts of herself she has lost on a succession of operating tables.
    [Show full text]
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • COMPLETE WARDROBE of SHADES. for BEST RESULTS, Dr.’S REMEDY SHADE COLLECTION SHOULD BE USED TOGETHER with BASIC BASE COAT and CALMING CLEAR SEALING TOP COAT
    COMPLETE WARDROBE OF SHADES. FOR BEST RESULTS, Dr.’s REMEDY SHADE COLLECTION SHOULD BE USED TOGETHER WITH BASIC BASE COAT AND CALMING CLEAR SEALING TOP COAT. ALTRUISTIC AMITY BALANCE NEW BOUNTIFUL BRAVE CHEERFUL CLARITY COZY Auburn Amethyst Brick Red BELOVED Blue Berry Cherry Coral Cafe A playful burnt A moderately A deep Blush A tranquil, Bright, fresh and A bold, juicy and Bright pinky A cafe au lait orange with bright, smokey modern Cool cotton candy cornflower blue undeniably feminine; upbeat shimmer- orangey and with hints of earthy, autumn purple. maroon. crème with a flecked with a the perfect blend of flecked candy red. matte. pinkish grey undertones. high-gloss finish. hint of shimmer. romance and fun. and a splash of lilac. DEFENSE FOCUS GLEE HOPEFUL KINETIC LOVEABLE LOYAL MELLOW MINDFUL Deep Red Fuchsia Gold Hot Pink Khaki Lavender Linen Mauve Mulberry A rich A hot pink Rich, The perfect Versatile warm A lilac An ultimate A delicate This renewed bordeaux with classic with shimmery and ultra bright taupe—enhanced that lends everyday shade of juicy berry shade a luxurious rich, romantic luxurious. pink, almost with cool tinges of sophistication sheer nude. eggplant, with is stylishly tart matte finish. allure. neon and green and gray. to springs a subtle pink yet playful sweet perfectly matte. flirty frocks. undertone. & classic. MOTIVATING NOBLE NURTURE PASSION PEACEFUL PLAYFUL PLEASING POISED POSITIVE Mink Navy Nude Pink Purple Pink Coral Pink Peach Pink Champagne Pastel Pink A muted mink, A sea-at-dusk Barely there A subtle, A poppy, A cheerful A pale, peachy- A high-shine, Baby girl pink spiked with subtle shade that beautiful with sparkly fresh bubble- candy pink with coral creme shimmering soft with swirls of purple and cocoa reflects light a hint of boysenberry.
    [Show full text]
  • The Red Emerald
    The Red Emerald Black Album Words by Seth William Rozendaal Photos by David Rozendaal This work is for the enjoyment of gemstone aficionados around the world and throughout time, and dedicated to the divine muse who inspires everything. This book celebrates the Red Emerald’s public debut at the 2017 Tucson Gem and Mineral Show. Graphics taken from the Mineralogical Record Volume 47 Number 1: Colombian Emeralds where noted. The two photos of the Heart matrix specimen on the top of the page in Section VI were taken by Wayne Schrimp. Seth Rozendaal is responsible for the landscape photo in Section II, the beveled heart in Section VI and Office Suite Graphics. The Suite Treasure necklace photo in Section XIII was taken at the Brent Isenberger Studio. Cover and all other interior photos in this album were taken by David Rozendaal. Without his tireless dedication, this publication would not have been possible. For additional information, please contact: Seth William Rozendaal (515) 868-7207 [email protected] Index I - Red Beryl IS Red Emerald II - Formation III - Matrix Specimens IV - Wafers V - Prisms VI - Twins VII - Clusters VIII - Bixbyite Combinations IX - Topaz Combinations X - Hourglass Patterning XI - The Scarlet Spectrum XII - Facet-Grade Red Emerald XIII - The Red Emerald Suite Treasure I ~ Red Beryl IS Red Emerald The human infatuation with Emeralds runs so deep, and our desire for them traces so far back… It's one of the only gemstones found in rank-signifying Neolithic headdresses. Yeah, you heard me: Caveman Crowns. Aja Raden - Author, Historian and Scientist Diamonds may be forever, but only Emeralds are eternal; our appreciation of Emeralds stretches from the beginning of human civilization to the very end.
    [Show full text]
  • Bird List Column A: 1 = 70-90% Chance Column B: 2 = 30-70% Chance Column C: 3 = 10-30% Chance
    Colombia: Chocó Prospective Bird List Column A: 1 = 70-90% chance Column B: 2 = 30-70% chance Column C: 3 = 10-30% chance A B C Tawny-breasted Tinamou 2 Nothocercus julius Highland Tinamou 3 Nothocercus bonapartei Great Tinamou 2 Tinamus major Berlepsch's Tinamou 3 Crypturellus berlepschi Little Tinamou 1 Crypturellus soui Choco Tinamou 3 Crypturellus kerriae Horned Screamer 2 Anhima cornuta Black-bellied Whistling-Duck 1 Dendrocygna autumnalis Fulvous Whistling-Duck 1 Dendrocygna bicolor Comb Duck 3 Sarkidiornis melanotos Muscovy Duck 3 Cairina moschata Torrent Duck 3 Merganetta armata Blue-winged Teal 3 Spatula discors Cinnamon Teal 2 Spatula cyanoptera Masked Duck 3 Nomonyx dominicus Gray-headed Chachalaca 1 Ortalis cinereiceps Colombian Chachalaca 1 Ortalis columbiana Baudo Guan 2 Penelope ortoni Crested Guan 3 Penelope purpurascens Cauca Guan 2 Penelope perspicax Wattled Guan 2 Aburria aburri Sickle-winged Guan 1 Chamaepetes goudotii Great Curassow 3 Crax rubra Tawny-faced Quail 3 Rhynchortyx cinctus Crested Bobwhite 2 Colinus cristatus Rufous-fronted Wood-Quail 2 Odontophorus erythrops Chestnut Wood-Quail 1 Odontophorus hyperythrus Least Grebe 2 Tachybaptus dominicus Pied-billed Grebe 1 Podilymbus podiceps Magnificent Frigatebird 1 Fregata magnificens Brown Booby 2 Sula leucogaster ________________________________________________________________________________________________________ WINGS ● 1643 N. Alvernon Way Ste. 109 ● Tucson ● AZ ● 85712 ● www.wingsbirds.com (866) 547 9868 Toll free US + Canada ● Tel (520) 320-9868 ● Fax (520)
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
    THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668.
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Geology and Selected Minerals of the Diamond Hill Quartz Mine Antreville, South Carolina by Mike Streeter, GMS Member Copyright March 2004
    Tips and Trips Page 11 The Georgia Mineral Society May 2004 Geology and Selected Minerals of the Diamond Hill Quartz Mine Antreville, South Carolina by Mike Streeter, GMS Member Copyright March 2004 Chrissy and I have spent a great deal of time at the Diamond Diamond Hill is nothing short of remarkable when you consider Hill Quartz Mine near Antreville, South Carolina over the past that the actual collecting areas occupy a total of less than 3 several months. Chester Karwoski, who purchased the acres and that each variety requires its own unique set of property in 2003, brought in some heavy earth-moving conditions to form. The three most sought after varieties of equipment last fall and has opened up some new collecting quartz at the mine are skeletal, smoky and amethyst. opportunities. On our most recent trip to the mine on February 28, 2004, members of the Rome Georgia Gem and Mineral Skeletal quartz (also known Society and the Southern Appalachian Mineral Society joined as elestial quartz) exhibits a us. Since it is no secret that that I am a geologist by trade, I layered or ribbed pattern. am often asked geological and mineralogical questions about Its appearance gave rise to collecting locales. While digging at Diamond Hill, I was asked the term "skeletal" as the to explain how the rocks and crystals formed. Now there's a crystals resemble what $64,000 question for you! I answered the question as best I someone with a good could at the time. Since then, I have researched the literature imagination would expect to obtain a more detailed explanation that I would like to share the skeleton of a quartz with you.
    [Show full text]