AN UPDATE on COLOR in GEMS. PART 2: COLORS INVOLVING MULTIPLE ATOMS and COLOR CENTERS by Emmunuel Fritsch and George R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Change of Gemstones by Exposure to Gamma Rays
2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 COLOR CHANGE OF GEMSTONES BY EXPOSURE TO GAMMA RAYS Giovanna L. C. de Lima1 and Fernando S. Lameiras2 1 Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) Campus da UFMG - Pampulha Av. Antônio Carlos 6627 31270-901 Belo Horizonte, MG [email protected] 2 Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) Campus da UFMG - Pampulha Av. Antônio Carlos 6627 31270-901 Belo Horizonte, MG [email protected] ABSTRACT A gem is appreciated by collectors and, when polished, widely used for jewelry manufacturing. For example, when quartz naturally or artificially acquires a color it becomes a gemstone (smoky quartz, morion, citrine, amethyst, or prasyolite). The presence of chromophore elements in a quartz sample was analysed by Fourier transform infrared spectrometry (FTIR). With a semi-quantitative analysis of the absorption FTIR spectra, it was possible to predict if colorless quartz has the potential to develop color when exposed to ionizing radiation and heat. Specific absorption bands show the presence of chromophore elements in quartz such as aluminum, iron, hydrogen, sodium, or lithium. Considering the ratio of the heights of the absorption bands of these elements, it was possible to predict the color quartz can develop. Samples of irradiated dark and light violet fluorites were analyzed by FTIR and energy-dispersive X-rays spectroscopy. The light violet samples has higher content of calcium relative to fluorine, as well higher content of hydroxyl, probably replacing fluorine in crystal lattice. -
CORDIERITE-GARNET GNEISS and ASSOCIATED MICRO- CLINE-RICH PEGMATITE at STURBRIDGE, I,{ASSA- CHUSETTS and UNION, CONNECTICUTI Fnor B.Cnrbn, [
THE AMERICAN MINERALOGIST, VOL 47, IVLY AUGUST, 1962 CORDIERITE-GARNET GNEISS AND ASSOCIATED MICRO- CLINE-RICH PEGMATITE AT STURBRIDGE, I,{ASSA- CHUSETTS AND UNION, CONNECTICUTI Fnor B.cnrBn, [/. S. GeologicalSurttey, Washington,D. C. Aesrnacr Gneiss of argillaceous composition at Sturbridge, Massachusetts, and at Union, Connecticut, 10 miles to the south, consists of the assemblagebiotite-cordierite-garnet- magnetite-microcline-quartz-plagioclase-sillimanite. The conclusion is made that this assemblagedoes not violate the phase rule. The cordierite contains 32 mole per cent of Fe- end member, the biotite is aluminous and its ratio MgO: (MgOf I'eO) is 0.54, and the gar- net is alm6e5 pyr26.agro2.espe1.2.Lenses of microcline-quartz pegmatite are intimately as- sociated with the gneissl some are concordant, others cut acrossthe foliation and banding of the gneiss. The pegmatites also contain small amounts of biotite, cordierite, garnet, graphite, plagioclase, and sillimanite; each mineral is similar in optical properties to the corresponding one in the gneiss. It is suggestedthat muscovite was a former constituent of the gneiss at a lower grade of metamorphism, and that it decomposedwith increasing metamorphism, and reacted with quartz to form siliimanite in situ and at lerst part of the microcline of the gneiss and pegmatites These rocks are compared with similar rocks of Fennoscandia and Canada. INtnouucrroN Cordierite-garnet-sillimanitegneisses that contain microcline-quartz pegmatiteare found in Sturbridge,Massachusetts, and Union, Connecti- cut. The locality (Fig. 1) at Sturbridgeis on the south sideof the \{assa- chusettsTurnpike at the overpassof the New Boston Road; this is about 1 mile west of the interchangeof Route 15 with the Turnpike. -
Mount Apatite Park, Auburn, Maine
Mount Apatite Park is a 325-acre wooded park located in the western portion of the city. The park offers a wide variety of recreational opportunities not often found in municipal park settings. Rock hounds have known about this area for over 150 years, when the first discoveries of gem-quality tourmaline were found there. Since then, the area has experienced a great deal of mineral exploration, both commercial and amateur. Today amateurs may still search the mine tailings for apatite, tourmaline, and quartz specimens (special rules apply). The park features approximately four miles of trails for non-motorized uses such as hiking, mountain biking, cross-country skiing, and snowshoeing. The Andy Valley Sno Gypsies also maintain a snowmobile trailhead within the park, which links to miles of regional snowmobile trails.The park is open from dawn until dusk year-round. As with all municipal parks, hunting is not allowed within park boundaries. Park brochures, which include a trail map, park rules, and other park information, are available at the Auburn Parks & Recreation Department office, Monday through Friday, 8a.m.-4:30p.m. Mount Apatite Park, Auburn, Maine Significance The Mt. Apatite quarries were important producers of commercial feldspar in the early 1900's. They played a prominent part in Maine's mining history. During the course of this mining activity, rare minerals and colorful crystals of green and pink tourmaline were found in both the Greenlaw and Maine Feldspar Quarries. These quarries also produced many large crystals of transparent smoky quartz. The complexity of the mineral assemblage at Mt. -
Near Vermilion Sands: the Context and Date of Composition of an Abandoned Literary Draft by J. G. Ballard
Near Vermilion Sands: The Context and Date of Composition of an Abandoned Literary Draft by J. G. Ballard Chris Beckett ‘We had entered an inflamed landscape’1 When Raine Channing – ‘sometime international model and epitome of eternal youthfulness’2 – wanders into ‘Topless in Gaza’, a bio-fabric boutique in Vermilion Sands, and remarks that ‘Nothing in Vermilion Sands ever changes’, she is uttering a general truth about the fantastic dystopian world that J. G. Ballard draws and re-draws in his collection of stories set in and around the tired, flamboyant desert resort, a resort where traumas flower and sonic sculptures run to seed.3 ‘It’s a good place to come back to,’4 she casually continues. But, like many of the female protagonists in these stories – each a femme fatale – she is a captive of her past: ‘She had come back to Lagoon West to make a beginning, and instead found that events repeated themselves.’5 Raine has murdered her ‘confidant and impresario, the brilliant couturier and designer of the first bio-fabric fashions, Gavin Kaiser’.6 Kaiser has been killed – with grim, pantomime karma – by a constricting gold lamé shirt of his own design: ‘Justice in a way, the tailor killed by his own cloth.’7 But Kaiser’s death has not resolved her trauma. Raine is a victim herself, a victim of serial plastic surgery, caught as a teenager in Kaiser’s doomed search for perpetual gamin youth: ‘he kept me at fifteen,’ she says, ‘but not because of the fashion-modelling. He wanted me for ever when I first loved him.’8 She hopes to find in Vermilion Sands, in its localized curvature of time and space, the parts of herself she has lost on a succession of operating tables. -
Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO. -
COMPLETE WARDROBE of SHADES. for BEST RESULTS, Dr.’S REMEDY SHADE COLLECTION SHOULD BE USED TOGETHER with BASIC BASE COAT and CALMING CLEAR SEALING TOP COAT
COMPLETE WARDROBE OF SHADES. FOR BEST RESULTS, Dr.’s REMEDY SHADE COLLECTION SHOULD BE USED TOGETHER WITH BASIC BASE COAT AND CALMING CLEAR SEALING TOP COAT. ALTRUISTIC AMITY BALANCE NEW BOUNTIFUL BRAVE CHEERFUL CLARITY COZY Auburn Amethyst Brick Red BELOVED Blue Berry Cherry Coral Cafe A playful burnt A moderately A deep Blush A tranquil, Bright, fresh and A bold, juicy and Bright pinky A cafe au lait orange with bright, smokey modern Cool cotton candy cornflower blue undeniably feminine; upbeat shimmer- orangey and with hints of earthy, autumn purple. maroon. crème with a flecked with a the perfect blend of flecked candy red. matte. pinkish grey undertones. high-gloss finish. hint of shimmer. romance and fun. and a splash of lilac. DEFENSE FOCUS GLEE HOPEFUL KINETIC LOVEABLE LOYAL MELLOW MINDFUL Deep Red Fuchsia Gold Hot Pink Khaki Lavender Linen Mauve Mulberry A rich A hot pink Rich, The perfect Versatile warm A lilac An ultimate A delicate This renewed bordeaux with classic with shimmery and ultra bright taupe—enhanced that lends everyday shade of juicy berry shade a luxurious rich, romantic luxurious. pink, almost with cool tinges of sophistication sheer nude. eggplant, with is stylishly tart matte finish. allure. neon and green and gray. to springs a subtle pink yet playful sweet perfectly matte. flirty frocks. undertone. & classic. MOTIVATING NOBLE NURTURE PASSION PEACEFUL PLAYFUL PLEASING POISED POSITIVE Mink Navy Nude Pink Purple Pink Coral Pink Peach Pink Champagne Pastel Pink A muted mink, A sea-at-dusk Barely there A subtle, A poppy, A cheerful A pale, peachy- A high-shine, Baby girl pink spiked with subtle shade that beautiful with sparkly fresh bubble- candy pink with coral creme shimmering soft with swirls of purple and cocoa reflects light a hint of boysenberry. -
The Red Emerald
The Red Emerald Black Album Words by Seth William Rozendaal Photos by David Rozendaal This work is for the enjoyment of gemstone aficionados around the world and throughout time, and dedicated to the divine muse who inspires everything. This book celebrates the Red Emerald’s public debut at the 2017 Tucson Gem and Mineral Show. Graphics taken from the Mineralogical Record Volume 47 Number 1: Colombian Emeralds where noted. The two photos of the Heart matrix specimen on the top of the page in Section VI were taken by Wayne Schrimp. Seth Rozendaal is responsible for the landscape photo in Section II, the beveled heart in Section VI and Office Suite Graphics. The Suite Treasure necklace photo in Section XIII was taken at the Brent Isenberger Studio. Cover and all other interior photos in this album were taken by David Rozendaal. Without his tireless dedication, this publication would not have been possible. For additional information, please contact: Seth William Rozendaal (515) 868-7207 [email protected] Index I - Red Beryl IS Red Emerald II - Formation III - Matrix Specimens IV - Wafers V - Prisms VI - Twins VII - Clusters VIII - Bixbyite Combinations IX - Topaz Combinations X - Hourglass Patterning XI - The Scarlet Spectrum XII - Facet-Grade Red Emerald XIII - The Red Emerald Suite Treasure I ~ Red Beryl IS Red Emerald The human infatuation with Emeralds runs so deep, and our desire for them traces so far back… It's one of the only gemstones found in rank-signifying Neolithic headdresses. Yeah, you heard me: Caveman Crowns. Aja Raden - Author, Historian and Scientist Diamonds may be forever, but only Emeralds are eternal; our appreciation of Emeralds stretches from the beginning of human civilization to the very end. -
Bird List Column A: 1 = 70-90% Chance Column B: 2 = 30-70% Chance Column C: 3 = 10-30% Chance
Colombia: Chocó Prospective Bird List Column A: 1 = 70-90% chance Column B: 2 = 30-70% chance Column C: 3 = 10-30% chance A B C Tawny-breasted Tinamou 2 Nothocercus julius Highland Tinamou 3 Nothocercus bonapartei Great Tinamou 2 Tinamus major Berlepsch's Tinamou 3 Crypturellus berlepschi Little Tinamou 1 Crypturellus soui Choco Tinamou 3 Crypturellus kerriae Horned Screamer 2 Anhima cornuta Black-bellied Whistling-Duck 1 Dendrocygna autumnalis Fulvous Whistling-Duck 1 Dendrocygna bicolor Comb Duck 3 Sarkidiornis melanotos Muscovy Duck 3 Cairina moschata Torrent Duck 3 Merganetta armata Blue-winged Teal 3 Spatula discors Cinnamon Teal 2 Spatula cyanoptera Masked Duck 3 Nomonyx dominicus Gray-headed Chachalaca 1 Ortalis cinereiceps Colombian Chachalaca 1 Ortalis columbiana Baudo Guan 2 Penelope ortoni Crested Guan 3 Penelope purpurascens Cauca Guan 2 Penelope perspicax Wattled Guan 2 Aburria aburri Sickle-winged Guan 1 Chamaepetes goudotii Great Curassow 3 Crax rubra Tawny-faced Quail 3 Rhynchortyx cinctus Crested Bobwhite 2 Colinus cristatus Rufous-fronted Wood-Quail 2 Odontophorus erythrops Chestnut Wood-Quail 1 Odontophorus hyperythrus Least Grebe 2 Tachybaptus dominicus Pied-billed Grebe 1 Podilymbus podiceps Magnificent Frigatebird 1 Fregata magnificens Brown Booby 2 Sula leucogaster ________________________________________________________________________________________________________ WINGS ● 1643 N. Alvernon Way Ste. 109 ● Tucson ● AZ ● 85712 ● www.wingsbirds.com (866) 547 9868 Toll free US + Canada ● Tel (520) 320-9868 ● Fax (520) -
Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite. -
The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668. -
The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig. -
Geology and Selected Minerals of the Diamond Hill Quartz Mine Antreville, South Carolina by Mike Streeter, GMS Member Copyright March 2004
Tips and Trips Page 11 The Georgia Mineral Society May 2004 Geology and Selected Minerals of the Diamond Hill Quartz Mine Antreville, South Carolina by Mike Streeter, GMS Member Copyright March 2004 Chrissy and I have spent a great deal of time at the Diamond Diamond Hill is nothing short of remarkable when you consider Hill Quartz Mine near Antreville, South Carolina over the past that the actual collecting areas occupy a total of less than 3 several months. Chester Karwoski, who purchased the acres and that each variety requires its own unique set of property in 2003, brought in some heavy earth-moving conditions to form. The three most sought after varieties of equipment last fall and has opened up some new collecting quartz at the mine are skeletal, smoky and amethyst. opportunities. On our most recent trip to the mine on February 28, 2004, members of the Rome Georgia Gem and Mineral Skeletal quartz (also known Society and the Southern Appalachian Mineral Society joined as elestial quartz) exhibits a us. Since it is no secret that that I am a geologist by trade, I layered or ribbed pattern. am often asked geological and mineralogical questions about Its appearance gave rise to collecting locales. While digging at Diamond Hill, I was asked the term "skeletal" as the to explain how the rocks and crystals formed. Now there's a crystals resemble what $64,000 question for you! I answered the question as best I someone with a good could at the time. Since then, I have researched the literature imagination would expect to obtain a more detailed explanation that I would like to share the skeleton of a quartz with you.