Eukaryotic-Like Protein Kinases in the Prokaryotes and the Myxobacterial Kinome

Total Page:16

File Type:pdf, Size:1020Kb

Eukaryotic-Like Protein Kinases in the Prokaryotes and the Myxobacterial Kinome Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome J. Pe´ rez†, A. Castan˜ eda-Garcıa†, H. Jenke-Kodama‡,R.Mu¨ ller§, and J. Mun˜ oz-Dorado†¶ †Departamento de Microbiologı´a,Instituto de Biotecnologı´a,Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain; ‡Department of Molecular Ecology, Institute of Biology, 10115 Berlin, Germany; and §Department of Pharmaceutical Biotechnology, Saarland University, D-66041 Saarbru¨cken, Germany Communicated by A. Dale Kaiser, Stanford University School of Medicine, Stanford, CA, July 18, 2008 (received for review March 13, 2008) Ser/Thr/Tyr kinases, which together comprise a major class of regu- mediated by a family of protein kinases exhibiting high sequence latory proteins in eukaryotes, were not believed to play an important similarities to their eukaryotic counterparts. The first eukaryotic- role in prokaryotes until recently. However, our analysis of 626 like protein kinase (ELK) reported in any prokaryote was found in prokaryotic genomes reveals that eukaryotic-like protein kinases the myxobacterium Myxococcus xanthus,a␦-Proteobacterium (6). (ELKs) are found in nearly two-thirds of the sequenced strains. We Publication of the M. xanthus DK1622 genome revealed that the have identified 2697 ELKs, most of which are encoded by multicellular strain contains a total of 99 ELKs (7), but this number is dwarfed strains of the phyla Proteobacteria (Myxococcales), Actinobacteria, by that of the myxobacterium Sorangium cellulosum So ce56 (8), Cyanobacteria, and Chloroflexi, and 2 Acidobacteria and 1 Plancto- which boasts 317, the largest numbers of ELKs reported so far mycetes. Astonishingly, 7 myxobacterial strains together encode 892 among the prokaryotes. ELKs, with 4 of the strains exhibiting a genomic ELK density similar to The M. xanthus genome also encodes a substantial number of that observed in eukaryotes. Most myxobacterial ELKs show a mod- typical bacterial 2-component systems (TCSs) (9). The need for a ular organization in which the kinase domain is located at the N complex regulatory system in this bacterium is evident from con- terminus. The C-terminal portion of the ELKs is highly diverse and sideration of its lifestyle. During growth, M. xanthus cells form often contains sequences with similarity to characterized domains, mobile, predatory communities known as ‘‘swarms,’’ which feed most of them involved in signaling mechanisms or in protein–protein cooperatively. Under starvation conditions, the cells initiate a interactions. However, many of these architectures are unique to the multicellular developmental program that culminates in the for- myxobacteria, an observation that suggests that this group exploits mation of macroscopic fruiting bodies filled with heat-resistant sophisticated and novel signal transduction systems. Phylogenetic myxospores. The spores remain dormant until nutrients are avail- reconstruction using the kinase domains revealed many orthologous able again, at which point they germinate, initiating a new vegeta- sequence pairs and a huge number of gene duplications that probably tive cycle (10, 11). Thus, the M. xanthus lifestyle requires the cells occurred after speciation. Furthermore, studies of the microsynteny in not only to monitor changes in the environment but also to commu- the ELK-encoding regions reveal only low levels of synteny among nicate with each other to coordinate movement and behavior. Myxococcus xanthus, Plesiocystis pacifica, and Sorangium cellulosum. Developmental sporulation also depends on the DKxanthene However, extensive similarities between M. xanthus, Stigmatella family of natural products (12). The other metabolites produced by aurantiaca, and 3 Anaeromyxobacter strains were observed, indicat- the cells (7) are assumed to provide it with a competitive advantage ing that they share regulatory pathways involving various ELKs. in the soil environment. Therefore, survival of M. xanthus also is intimately linked to the regulation of secondary metabolism. Anaeromyxobacter ͉ Myxococcus ͉ Plesiocystis ͉ Sorangium ͉ Stigmatella Growing evidence that ELKs play a role in development, virulence, metabolism, or stress adaptation in many other bac- terial genera (13, 14, 15, 16, 17) has prompted efforts to ignal transduction pathways in the eukaryotes typically are characterize the prokaryotic kinome (18, 19). However, the first mediated by protein kinases, which transfer the ␥-phosphate of S analysis in 2005 (18) was limited by the availability of only 125 ATP to a hydroxyl moiety (Ser, Thr, and/or Tyr) on a protein complete genome sequences, none of which belonged to the substrate. This kinase activity resides in a sequence of 250–300 myxobacteria, and the second analysis (19) focused on met- residues known as the catalytic domain, which consists of 12 agenomic sequences from a global ocean sampling and so was subdomains differentiated by their respective consensus motifs (1). unlikely to be representative of all prokaryotes. In this study, we The solved structure of a prototypical kinase domain (2) revealed aimed to assess whether typical kinases are widely represented that it consists of 2 lobes joined by a hinge segment. Catalysis occurs in the prokaryotes and to determine their exact number in each at the interface of the 2 lobes, where the catalytic residues interact prokaryotic genome. For this study we carried out a compre- with both ATP and the substrate. The key amino acids for the hensive bioinformatic analysis of the typical ELKs that constitute phosphotransfer reaction are the Lys of subdomain II and the Asp the kinome of the 7 myxobacterial strains sequenced. We also residues of subdomains VIb (D1) and VII (D2). Mutations in any surveyed the remaining 619 prokaryotic genomes deposited in of these residues are predicted to inactivate the proteins. the database of the National Center for Biotechnology Infor- For the kinases to function properly, their catalytic activity must mation (NCBI; http://www.ncbi.nlm.nih.gov/genomes/ be tightly controlled. Indeed, several different regulatory mecha- lproks.cgi) before January 15, 2008. This analysis revealed the nisms have been described (3). For example, 1 type of kinases presence of ELKs in approximately two-thirds of all prokaryotes. catalyzes an autophosphorylation reaction within the catalytic Comparison of the largest prokaryotic kinomes with those of domain, targeting a region termed the ‘‘activation segment’’ that runs from subdomain VII to VIII. Phosphorylation within this segment changes the conformation of the polypeptide and activates Author contributions: J.P. and J.M.-D. designed research; J.P. performed research; J.P., the enzyme (4). Proteins regulated by this mechanism require an A.C.-G., H.J.-K., R.M., and J.M.-D. analyzed data; and J.P., R.M., and J.M.-D. wrote the paper. Arg just upstream of Asp D1 and so are designated ‘‘RD kinases.’’ The authors declare no conflict of interest. Correspondingly, proteins that lack this Arg are known as ‘‘non-RD ¶To whom correspondence should be addressed. E-mail: [email protected]. kinases’’ (5). This article contains supporting information online at www.pnas.org/cgi/content/full/ Signal transduction pathways dependent on phosphorylation at 0806851105/DCSupplemental. Ser/Thr/Tyr also occur in the prokaryotes. This reaction also is © 2008 by The National Academy of Sciences of the USA 15950–15955 ͉ PNAS ͉ October 14, 2008 ͉ vol. 105 ͉ no. 41 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0806851105 Downloaded by guest on September 25, 2021 several eukaryotes supports a link between ELKs and multicellularity. Results and Discussion ELKs in the Myxobacteria. The genomes of M. xanthus DK1622 (9.14 Mb containing 99 ELKs) and S. cellulosum So ce 56 (13.03 Mb containing 317 ELKs) encode the largest numbers of ELKs re- ported to date in the prokaryotes (7, 8). Five additional myxobac- terial genomes have become available recently, of which 2 are complete [Anaeromyxobacter sp. Fw109–5 (5.3 Mb) and Anaero- myxobacter dehalogenans 2CP-C (5.01 Mb)], and 3 are incomplete [Plesiocystis pacifica SIR-1 (10.59 Mb), Stigmatella aurantiaca DW4/ 3–1 (10.27 Mb), and Anaeromyxobacter sp. K (5 Mb)]. Consistent Fig. 1. Proportion of genome devoted to encoding ELKs in the myxobacteria as with the expectation of a high ELK content, we have found that a function of genome size. The equation of the exponential curve and the Anaeromyxobacter sp. K encodes 14 ELKs, A. dehalogenans en- coefficient of determination are indicated. codes 18, Anaeromyxobacter sp. Fw109–5 encodes 20, S. aurantiaca encodes 194, and P. pacifica encodes 230. Moreover, these numbers adaptability of the cells. Thus, evolution of these complex bacteria may increase when the incomplete genomes are completed. These may have selected cells with more ELKs in preference to using data confirm that the presence of a large number of genes encoding more TCSs. ELKs is a general feature of the myxobacteria. Together, the 7 myxobacteria encode at least 892 ELKs. Conservation of Catalytic and Regulatory Residues in the Myxobac- It presently is unclear why the myxobacterial kinome is so terial ELKs. Because kinase activity depends on the presence of 3 extensive. However, the level of regulation required to control their active site residues, we have analyzed all myxobacterial ELKs for the complex social lifestyles provides an attractive explanation. Four presence of these amino acids. This analysis revealed that the 3 cell types have been identified in
Recommended publications
  • Two Independent Retrons with Highly Diverse Reverse Transcriptases In
    Proc. Natl. Acad. Sci. USA Vol. 87, pp. 942-945, February 1990 Biochemistry Two independent retrons with highly diverse reverse transcriptases in Myxococcus xanthus (multicopy single-stranded DNA/2',5'-phosphodiester/codon usage/myxobacteria) SUMIKO INOUYE, PETER J. HERZER, AND MASAYORI INOUYE Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854 Communicated by Russell F. Doolittle, November 27, 1989 (received for review September 29, 1989) ABSTRACT A reverse transcriptase (RT) was recently found that the Mx65 retron is highly diverse and independent found in Myxococcus xanthus, a Gram-negative soil bacterium. from the Mx162 retron and that RT associated with the Mx65 This RT has been shown to be associated with a chromosomal retron has only 47% identity with RT for the Mx162 retron. region designated a retron responsible for the synthesis of a peculiar extrachromosomal DNA called msDNA (multicopy single-stranded DNA). We demonstrate that M. xanthus con- MATERIALS AND METHODS tains two independent, unlinked retrons, one for the synthesis Materials. The clone of the 9.0-kilobase (kb) Pst I fragment of msDNA-Mxl62 and the other for msDNA-Mx65. The struc- containing the Mx65 retron was obtained (8). Restriction tural analysis of the retron for msDNA-Mx65 revealed that the enzymes were purchased from New England Biolabs and coding regions for msdRNA (msr) and msDNA (msd), and an Boehringer Mannheim. open reading frame (ORF) downstream of msr are arranged in A deletion mutant strain ofthe Mx162 retron, AmsSX, was the same manner as found for the Mx162 retron.
    [Show full text]
  • Isolation, Antimicrobial Activity of Myxobacterial Crude Extracts and Identification of the Most Potent Strains
    Arch Biol Sci. 2017;69(3):561-568 https://doi.org/10.2298/ABS161011132C Isolation, antimicrobial activity of myxobacterial crude extracts and identification of the most potent strains Ivana Charousová*, Juraj Medo and Soňa Javoreková Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia *Corresponding author: [email protected] Received: October 11, 2016; Revised: November 14, 2016; Accepted: November 18, 2016; Published online: December 14, 2016 Abstract: Broad spectrum antimicrobial agents are urgently needed to fight frequently occurring multidrug-resistant pathogens. Myxobacteria have been regarded as “microbe factories” for active secondary metabolites, and therefore, this study was performed to isolate two bacteriolytic genera of myxobacteria, Myxococcus sp. and Corallococcus sp., from 10 soil/sand samples using two conventional methods followed by purification with the aim of determining the antimicrobial activity of methanol extracts against 11 test microorganisms (four Gram-positive, four Gram-negative, two yeasts and one fungus). Out of thirty-nine directly observed strains, 23 were purified and analyzed for antimicrobial activities. Based on the broth microdilution method, a total of 19 crude extracts showed antimicrobial activity. The range of inhibited wells was more important in the case of anti-Gram-positive-bacterial activity in comparison with the anti-Gram-negative-bacterial and antifungal activity. In light of the established degree and range of antimicrobial activity, two of the most active isolates (BNEM1 and SFEC2) were selected for further characterization. Morphological parameters and a sequence similarity search by BLAST revealed that they showed 99% sequence similarity to Myxococcus xanthus − BNEM1 (accession no.
    [Show full text]
  • Emended Descriptions of the Genera Myxococcus and Corallococcus, Typification of the Species Myxococcus Stipitatus and Myxococcu
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2122–2128 DOI 10.1099/ijs.0.003566-0 Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an Opinion Elke Lang and Erko Stackebrandt Correspondence DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. Elke Lang 7B, 38124 Braunschweig Germany [email protected] The genus Corallococcus was separated from the genus Myxococcus mainly on the basis of differences in morphology and consistency of swarms and fruiting bodies of the respective members. Phylogenetic, chemotaxonomic and physiological evidence is presented here that underpins the separate status of these phylogenetically neighbouring genera. Emended descriptions of the two genera are presented. The data also suggest that the species Corallococcus macrosporus belongs to the genus Myxococcus. To the best of our knowledge, the type strains of the species Myxococcus macrosporus and Myxococcus stipitatus are not available from any established culture collection or any other source. A Request for an Opinion is made regarding the proposal that strain Cc m8 (5DSM 14697 5CIP 109128) be formally recognized as the neotype strain for the species Myxococcus macrosporus, replacing the designated type strain Windsor M271T, and that strain Mx s8 (5DSM 14675 5JCM 12634) be formally recognized as the neotype strain for the species Myxococcus stipitatus, replacing the designated type strain Windsor M78T. Introduction The genus Myxococcus was described by Thaxter (1892), Within the family Myxococcaceae, delineation of genera, who first recognized that the myxobacteria, formerly descriptions of species and affiliations of strains to species assigned to the fungi, were in fact bacteria.
    [Show full text]
  • Libros Sobre Enfermedades Autoinmunes: Tratamientos, Tipos Y Diagnósticos- Profesor Dr
    - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS . AUTOR: PROFESOR DR. ENRIQUE BARMAIMON.- - Doctor en Medicina.- - Cátedras de: - Anestesiología - Cuidados Intensivos - Neuroanatomía - Neurofisiología - Psicofisiología - Neuropsicología. - 9 TOMOS - - TOMO VI - -AÑO 2020- 1ª Edición Virtual: (.2020. 1)- - MONTEVIDEO, URUGUAY. 1 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - Queda terminantemente prohibido reproducir este libro en forma escrita y virtual, total o parcialmente, por cualquier medio, sin la autorización previa del autor. -Derechos reservados. 1ª Edición. Año 2020. Impresión [email protected]. - email: [email protected].; y [email protected]; -Montevideo, 15 de enero de 2020. - BIBLIOTECA VIRTUAL DE SALUD del S. M.U. del URUGUAY; y BIBLIOTECA DEL COLEGIO MÉDICO DEL URUGUAY. 0 0 0 0 0 0 0 0. 2 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - TOMO V I - 3 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - ÍNDICE.- - TOMO I . - - ÍNDICE. - PRÓLOGO.- - INTRODUCCIÓN. - CAPÍTULO I: -1)- GENERALIDADES. -1.1)- DEFINICIÓN. -1.2)- CAUSAS Y FACTORES DE RIESGO. -1.2.1)- FACTORES EMOCIONALES. -1.2.2)- FACTORES AMBIENTALES. -1.2.3)- FACTORES GENÉTICOS. -1.3)- Enterarse aquí, como las 10 Tipos de semillas pueden mejorar la salud. - 1.4)- TIPOS DE TRATAMIENTO DE ENFERMEDADES AUTOINMUNES. -1.4.1)- Remedios Naturales. -1.4.1.1)- Mejorar la Dieta.
    [Show full text]
  • 723874V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/723874; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Discovery of a polybrominated aromatic 2 secondary metabolite from a planctomycete 3 points at an ambivalent interaction with its 4 macroalgae host 5 6 7 8 9 10 11 Fabian Panter[a,b], Ronald Garcia[a,b], Angela Thewes[a,b], Nestor Zaburannyi [a,b], Boyke Bunk [b,c], Jörg 12 Overmann[b,c], Mary Victory Gutierrez [d], Daniel Krug[a,b] and Rolf Müller*[a,b] 13 14 15 * Corresponding author, rolf.mü[email protected] 16 17 18 19 20 [a] Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz 21 Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, 22 Germany 23 [b] German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Germany 24 [c] Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 3814 Braunschweig, 25 Germany 26 [d] Biology Department, Far Eastern University, Nicanor Reyes St., Sampaloc, Manila, 1008 Metro Manila, Philippines 27 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/723874; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Novel Myxobacteria As a Potential Source of Natural Products and Description of Inter-Species Nature of C-Signal
    Novel myxobacteria as a potential source of natural products and description of inter-species nature of C-signal Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Ram Prasad Awal (M. Sc. in Medical Microbiology) Saarbrücken 2016 Tag des Kolloquiums: ......19.12.2016....................................... Dekan: ......Prof. Dr. Guido Kickelbick.............. Berichterstatter: ......Prof. Dr. Rolf Müller...................... ......Prof. Dr. Manfred J. Schmitt........... ............................................................... Vositz: ......Prof. Dr. Uli Kazmaier..................... Akad. Mitarbeiter: ......Dr. Jessica Stolzenberger.................. iii Diese Arbeit entstand unter der Anleitung von Prof. Dr. Rolf Müller in der Fachrichtung 8.2, Pharmazeutische Biotechnologie der Naturwissenschaftlich-Technischen Fakultät III der Universität des Saarlandes von Oktober 2012 bis September 2016. iv Acknowledgement Above all, I would like to express my special appreciation and thanks to my advisor Professor Dr. Rolf Müller. It has been an honor to be his Ph.D. student and work in his esteemed laboratory. I appreciate for his supervision, inspiration and for allowing me to grow as a research scientist. Your guidance on both research as well as on my career have been invaluable. I would also like to thank Professor Dr. Manfred J. Schmitt for his scientific support and suggestions to my research work. I am thankful for my funding sources that made my Ph.D. work possible. I was funded by Deutscher Akademischer Austauschdienst (DAAD) for 3 and half years and later on by Helmholtz-Institute. Many thanks to my co-advisors: Dr. Carsten Volz, who supported and guided me through the challenging research and Dr. Ronald Garcia for introducing me to the wonderful world of myxobacteria.
    [Show full text]
  • Bacteria - Wikipedia Page 1 of 33
    Bacteria - Wikipedia Page 1 of 33 Bacteria From Wikipedia, the free encyclopedia Bacteria ( i/bækˈtɪəriə/; common noun bacteria, singular bacterium) constitute a large domain of prokaryotic Bacteria microorganisms. Typically a few micrometres in length, Temporal range: bacteria have a number of shapes, ranging from spheres to Archean or earlier – Present rods and spirals. Bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Had'n Archean Proterozoic Pha. Bacteria inhabit soil, water, acidic hot springs, radioactive waste,[4] and the deep portions of Earth's crust. Bacteria also live in symbiotic and parasitic relationships with plants and animals. There are typically 40 million bacterial cells in a gram of soil and a million bacterial cells in a millilitre of fresh water. There are approximately 5×1030 bacteria on Earth,[5] forming a biomass which exceeds that of all plants and [6] animals. Bacteria are vital in recycling nutrients, with Scanning electron micrograph of many of the stages in nutrient cycles dependent on these Escherichia coli rods organisms, such as the fixation of nitrogen from the atmosphere and putrefaction. In the biological communities Scientific classification surrounding hydrothermal vents and cold seeps, bacteria Domain: Bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and Woese, Kandler & Wheelis, methane, to energy. On 17 March 2013, researchers reported 1990[1] data that suggested bacterial life
    [Show full text]
  • Endogenous Lipid Chemoattractants and Extracellular Matrix Proteins
    ENDOGENOUS LIPID CHEMOATTRACTANTS AND EXTRACELLULAR MATRIX PROTEINS INVOLVED IN DEVELOPMENT OF MYXOCOCCUS XANTHUS by PATRICK DAVID CURTIS (Under the Direction of Lawrence J. Shimkets) ABSTRACT The soil bacterium Myxococcus xanthus is a model organism to study multicellular development and biofilm formation. When starved, swarms of M. xanthus cells aggregate into a multicellular architecture called a fruiting body, wherein cells differentiate into metabolically dormant myxospores. Fruiting body formation requires directed cell movement and production of an extracellular matrix (ECM) to facilitate cell-contact dependent motility (Social motility), and biofilm formation. M. xanthus displays chemotaxis towards phospholipids derived from its membrane containing the rare fatty acid 16:1ω5c. This study demonstrates that 16:1ω5c is primarily found at the sn-1 position within the major membrane phospholipid, phosphatidylethanolamine (PE), which is contrary to the established dogma of fatty acid localization in Gram-negative bacteria. Additionally, 16:1ω5c at the sn-1 position stimulates chemotaxis stronger than 16:1ω5c located at the sn-2 position. These results suggest that the endogenous lipid chemoattractants may serve as a self-recognition system. Chemotaxis towards a self-recognition marker could facilitate movement of cells into aggregation centers. Lipid chemotaxis is dependent on the ECM-associated zinc metalloprotease FibA, suggesting that the ECM may harbor protein components of extracellular signaling pathways. Protein components of prokaryotic biofilms are largely unexplored. Twenty one putative ECM-associated proteins were identified, including FibA. Many are novel proteins. A large portion of the putative ECM proteins have lipoprotein secretion signals, unusual for extracellular proteins. An MXAN4860 pilA mutant displays a 24 hour delay in fruiting body formation and sporulation compared to the pilA parent, indicating that MXAN4860 functions in the FibA-mediated developmental pathway previously described.
    [Show full text]
  • Aberystwyth University Comparative Genomics and Pan-Genomics of the Myxococcaceae, Including a Description of Five Novel Species
    Aberystwyth University Comparative Genomics and Pan-Genomics of the Myxococcaceae, including a Description of Five Novel Species Chambers, James; Sparks, Natalie; Sydney, Natashia; Livingstone, Paul; Cookson, Alan; Whitworth, David Published in: Genome Biology and Evolution DOI: 10.1093/gbe/evaa212 Publication date: 2020 Citation for published version (APA): Chambers, J., Sparks, N., Sydney, N., Livingstone, P., Cookson, A., & Whitworth, D. (2020). Comparative Genomics and Pan-Genomics of the Myxococcaceae, including a Description of Five Novel Species: Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov., and Pyxidicoccus trucidator sp. nov. Genome Biology and Evolution, 12(12), 2289-2302. https://doi.org/10.1093/gbe/evaa212 Document License CC BY-NC General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 01.
    [Show full text]
  • Perspectives
    Copvright 0 1999 bv the Genetics Society of Anlerica Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove ROLANDTHAXTER’S Legacy and the Origins of Multicellular Development Dale Kaiser Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, Calijornia 94305 OLAND THAXTER published a bombshell in R December,1892. He reported that Chondro- myces crocatus, before then considered an imperfect fungus because of its complex fruiting bodv, was ac- tually a bacterium (Figure 1). THAXTERhad discov- ered theunicellular vegetative stage of C. crocatus; the cells he found were relatively short and they divided by binary fission. C. crocatus was, heconcluded, a “communal bacterium.” THAXTERdescribed the lo- comotion, swarming, aggregation and process of fruit- ing body formation of C. crocatus and its relatives, which are collectively called myxobacteria, with an accuracy that has survived 100 years of scrutiny. He recognized the behavioral similarity to the myxomv- cetes and the cellular slime molds, drawing attention in all three to the transition from single cells to an integrated multicellular state. He described the be- havior of myxobacteria in fructification in terms of a “course of development” because it was “a definitely recurring aggregation of individuals capable of con- certed action toward a definiteend” (THAXI‘ER1892). This essay will emphasize some implications of THAX- TER’S demonstrations, often apparently unrecognized. The striking similarities to cellular slime mold de- velopment probably led JOHN TYLERBONNER and KENNETHB. RAPER,50 years after THAXTER’Sdiscov- ery, to take independent forays into myxobacterial development. RAPER,an eminent mycologist, had in FIGURE1 .“Chondromyces crocatus fruiting bodv.
    [Show full text]
  • A Quantitative Assay to Study Cell Movement in the Myxobacteria
    jf. Cell Sci. 25, 173-178 (i977) 173 Printed in Great Britain A QUANTITATIVE ASSAY TO STUDY CELL MOVEMENT IN THE MYXOBACTERIA JOSEPH LONSKI, RONALD HEROMIN AND DAVID INGRAHAM Department of Biology, Bucknell University, Lezvisburg, Pennsylvania, U.S.A. SUMMARY A simple quantitative assay has been developed to test the rate of cell movement of myxo- bacteria. The assay employs an agar surface and at no time are the cells cultured in a liquid environment. Isolation of a rate-increasing substance(s) from fruiting Myxococcus xartthus is reported. The understanding of the aggregative process in these bacteria will be aided by characterization of the chemotactic system. INTRODUCTION The myxobacteria represent a unique group of procaryotes which interact with each other throughout their life cycle. These interactions play a role both in the swarming and feeding process, as well as in fruiting body formation. The general properties of the myxobacteria have been reviewed several times (Dworkin, 1966; 1972). A distinctive feature of the myxobacteria is that when cells on the surface of a solid medium are deprived of specific nutrients, they shift from growth to development and begin to migrate, by means of a gliding motility, into aggregation centres (Dworkin, 1963). A number of investigations (Lev, 1954; Jennings, 1961; McVittie & Zahler, 1962; Fleugel, 1963) have suggested that this aggregation is in response to a chemo- tactic substance but this has not yet been carefully examined. Having aggregated, the cells then construct a macroscopic fruiting body. For Myxococcus xanthus this is a simple mound of myxospores encased in a slime sheath. This research was initiated to aid in the search for the mechanism of aggregation of these procaryotes.
    [Show full text]
  • The Soil Microbial Food Web Revisited: Predatory Myxobacteria As Keystone Taxa?
    The ISME Journal https://doi.org/10.1038/s41396-021-00958-2 ARTICLE The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? 1 1 1,2 1 1 Sebastian Petters ● Verena Groß ● Andrea Söllinger ● Michelle Pichler ● Anne Reinhard ● 1 1 Mia Maria Bengtsson ● Tim Urich Received: 4 October 2018 / Revised: 24 February 2021 / Accepted: 4 March 2021 © The Author(s) 2021. This article is published with open access Abstract Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5–9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized fi 1234567890();,: 1234567890();,: predatory bacteria af liated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition.
    [Show full text]