Observations of Extrasolar Planets

1. Kepler transits II. Doppler velocity III. Microlensing IV. Imaging V. Disks

Choose Subset of Planets/ for High Detectability

Only GK dwarfs (Tef/log g) GK dwarfs • • Only bright stars (Kp < 15) • Only high SNR transits (SNR > 10 in 90 days)

SNR ≈ 10

KOIï223.02 KOIï542.01

Full sample Restricted sample ~156,000 stars → ~58,000 stars 1,230 planets 438 planets

P=41.008 d Rp=2.4 ReP=41.887 d Rp=2.7 Re

KOIï592.01 KOIï711.01

P=39.752 d Rp=2.7 Re P=44.699 d Rp=2.7 Re ηdisc = Kepler discovery efficiency

ηtr = planet transit probability n ≡ number of planets per ∂2n ∝ RαP β ∂ ln R∂ln P (say)

ï2 = ï1.7 0.5 < / < 20 ï2 = 1.3 0.5 < / < 20 10 _ R REarth 10 ` R REarth 0.5 < P/days < 50 0.5 < P/days < 50 period distribution 10ï3 10ï3 not well fitted by single power law

ï4 ï4 Planet Counts per Star 10 Planet Counts per Star 10

1 10 1 10 Planet Radius [REarth] Period [days] divide into fast and slow

ï2 `fast = 2.23 `slow = 0.63 ï2 = ï1.93 populations and fit 10 _slow 10 _fast = ï1.44 separately P < 7 days ï3 10ï3 10 ∂2n ∝ R−1.4P 2.2 ∂ ln R∂ln P

ï4 ï4 Planet Counts per Star 10 Planet Counts per Star 10 P > 7 days ∂2n ∝ R−1.9P 0.6 1 10 1 10 ∂ ln R∂ln P Planet Radius [REarth] Period [day] n (R > 2 R⊕ , P < 50 days) ~ 0.2 planet per star

Trust detection efficiency down to 1R⊕ , and extrapolate to 365 days :

n (R > 1 R⊕ , P < 365 days) ~ 2 planets per star 35 Kepler 1.0 Kepler 35 Kepler 1.0 Kepler 30 Simulated: 0.8 Simulated: 30 Simulated: 0.8 Simulated: 25 ￿ ￿ 25 ￿ ￿ 35 1.0 ￿ 0.0001 0.635 ￿ 0.0001 1.0 ￿ 0.3 0.6 ￿ 0.3 Kepler 20 Kepler Kepler 20 Kepler 30 Simulated: ￿ 0.8 Simulated: 0.430 Simulated: ￿ 0.8 Simulated: 0.4 25 15 CDF 15 CDF ￿ ￿ 0.0001 0.6 ￿ ￿ 0.0001 25 ￿ ￿KS0.3Stat: 0.6 ￿ ￿ 0.3 KS Stat: 20 10 0.220 10 0.2 ￿ 5 0.4 ￿ ∆ ￿ 0.212 0.45 ∆ ￿ 0.2 15 CDF 0.015 CDF 0.0 10 0 0.2 KS Stat: 10 0.20 KS Stat: 0.5 1.0 1.5∆ ￿ 0.2122.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5∆ ￿ 0.2 2.0 0.0 0.5 1.0 1.5 2.0 5 0.0 5 0.0 0 0 0.5 1.0 1.5 2.0 0.0 ￿0.5 ￿1.0circ 1.5 2.0 0.0 0.5 ￿1.0￿circ1.5 2.0 0.0 0.5 ￿1.0￿circ1.5 2.0 ￿ ￿circ

￿ ￿circ ￿ ￿circ 1.0 ￿ ￿circ ￿ ￿circ 1.0 25 Kepler Kepler 30 Kepler Kepler Simulated: 0.8 Simulated: 25 Simulated: 0.8 Simulated: 20 1.0 1.0 25 Kepler Kepler￿ ￿ ￿ 0.05 0.630 ￿ ￿ 0.05 ￿ Kepler 20 Kepler ￿ ￿ ￿ 0.35 0.6 ￿ ￿ 0.35 ￿ Simulated: 15 0.8 Simulated: 25 Simulated: 0.8 Simulated: 20 ￿ 0.4 ￿ 15 0.4 ￿ ￿ ￿ 0.05 10 0.6 ￿ ￿ 0.05 ￿ CDF 20 ￿ ￿ ￿ 0.35 0.6 ￿ ￿ 0.35 ￿ CDF 15 KS Stat: 10 KS Stat: ￿ 0.4 ￿ 0.215 0.4 0.2 10 CDF 5 ∆ ￿ 0.182 CDF 5 ∆ ￿ 0.206 KS Stat: 0.010 KS Stat: 0.0 0 0.2 0.20 5 ∆ ￿ 0.182 5 ∆ ￿ 0.206 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0 0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ 1.0 35 1.0 25 Kepler Kepler Kepler Kepler 35 30 Kepler 1.0 Kepler Simulated: 0.8 Simulated: Kepler 1.0 Kepler Simulated: 0.8 Simulated: 25 20 30 25 Simulated: 0.8 Simulated￿ : ￿ ￿ 0.1 0.6 ￿ ￿ 0.1 ￿ Simulated: 0.8 Simulated: ￿ ￿ ￿ 0.4 0.6 ￿ ￿ 0.4 ￿ 20 15 25 20 ￿ ￿ ￿ 0.1 ￿ 0.6 ￿ ￿ 0.1 ￿ 0.4 ￿ ￿ ￿ 0.4 ￿ 0.6 ￿ ￿ 0.4 ￿ 0.4 15 CDF 20 15 CDF ￿ 10 ￿ 0.4 KS Stat: 0.4 KS Stat: CDF 0.215 CDF 10 0.2 1.0 10 1.0 5 0.2 KS Stat: 10 ∆ ￿ 0.142Eccentricity0.25 alters KS Stat: ∆ ￿ 0.251 5 ∆ ￿ 0.142 0.0 ∆ ￿ 0.251 0.0 0 0.0 eccentric 5 0.00 0.8 0 0.80.0 0.5 = 0.51.0 1.5 2.0 00.0 0.5 1.0 1.5 transit2.0 duration0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ 0.6 ￿ ￿circ 0.6 ￿ ￿circ ￿ ￿circ 2R￿!￿circ 35 Kepler 1.0 Kepler 1.035 Kepler Dcirc ≡ P1.030 × Kepler 1.0 CDF CDF 30 Kepler circular 30 Kepler Kepler Kepler 0.4 30 30 SimulatedKepler: 0.80.4 1.0 SimulatedKepler: 30 KeplerSimulated: 1.00.8 KeplerSimulated2πa : 25 Simulated: 0.8 Simulated: 25 Simulated: 0.8 Simulated: 25 ￿ 0.0001Simulated: 0.8 ￿ 0.0001Simulated: 2525 Simulated￿ 0.3 : 0.8 Simulated￿ 0.3: 25 ￿ 0.6 ￿ ￿ ￿ 0.15 ￿ ￿ 0.15 ￿ 0.620 ￿ ￿ ￿ 0.45 ￿ ￿ 0.45 20 ￿ ￿ 0.15 20 ￿ ￿ 0.15￿ 0.62020 ￿ ￿ ￿ 0.45 ￿ ￿ 0.45 ￿ 0.6 ￿ ￿ 20 ￿ 0.6 ￿ ￿ ￿ 0.6 inclined￿ 0.2 ￿ 0.40.2 ￿ 0.415

CDF 15 CDF 15 ￿ ￿ 0.415 0.4 15 0.4 CDF 15 Actual D lower if0.4 CDF 10 0.210CDF KS Stat: 10 KS Stat: CDF 0.210 near periapseKS Stat: KS Stat: 10 KS Stat: 0.210 KS Stat: 0.2 0.0 5 0.05 0.2 ∆ ￿ 0.212 5 ∆ ￿ 0.106 0.25 ∆ ￿ 0.2 ∆ ￿ 0.262 5 0.0 ∆ ￿ 0.106 0.05 0.0 ∆ ￿ 0.262 0.0 0 0 0.0 0 0.00 0 0.0 0.5 1.0 1.5 0 2.0 0.0 0.2 0.4 0.00.50.6 0.51.0 0.81.01.5 1.52.01.0 2.0 0.00.0 0.00.50.5 0.51.01.01.0 1.51.51.5 2.02.0 0.00.0 0.50.50.5 1.01.01.0Actual1.51.51.5 2.02.0D2.0higher if 0.00.00.0near0.50.50.5 apoapse1.01.01.0 1.51.51.5 2.02.02.0 0.0 0.5 1.0 1.5 2.0 ￿ ￿ ￿circ ￿ ￿￿circ￿circ ￿￿￿￿￿circ￿circcirc ￿￿￿ ￿￿circcirc ￿￿￿￿￿￿circcirccirc ￿ ￿circ

40 40 Kepler 1.0 1.0 Kepler 1.030 Kepler 1.01.0 Kepler 1.0 25 Kepler Kepler Kepler ￿ 25 Kepler Kepler 25 Kepler Kepler Kepler 30 SimulatedSimulated: : 0.8300.8 SimulatedSimulated: : Simulated: 0.825 Simulated: Simulated:: 0.80.8 SimulatedSimulated: : Simulated: 0.8 Simulated: 20 ￿ ￿ ￿ 0.2 20 ￿ 0.5 20 ￿ 0.5￿ ￿￿ 0.05￿ ￿ 0.2 0.6 0.6 ￿ 0.05￿ ￿ ￿ ￿ ￿ 0.2 0.620 ￿ ￿ 0.2 ￿ ￿ 0.35 0.60.6 ￿ ￿ 0.35￿ ￿ ￿ ￿ 0.5 0.6 ￿ ￿ 0.5 ￿ ￿ ￿ 15 ￿ ￿

15 ￿ 15 ￿ ￿ ￿ ￿ 20 ￿ 200.4 15 0.4 0.4CDF 0.4 CDF 0.4 0.4 CDF CDF 10 CDF 10 CDF 10 10 0.2 KSKSStatStat: : 10 KS Stat: 0.2 KS KSStat:Stat: KS Stat: 0.210 0.25 0.2 0.2 5 ∆ ￿∆0.182￿ 0.083 5 ∆ ￿ 0.083 5 ∆ ￿ ∆0.285￿ 0.206 ∆ ￿ 0.285 0.0 0.0 0.0 0.00.0 0.0 0 0 0 00 0 0.50.0 1.00.5 1.01.5 1.52.0 2.0 0.00.00.00.50.50.51.01.01.01.51.51.52.02.02.0 0.00.00.0 0.50.50.5 1.01.0 1.51.51.5 2.02.02.0 0.00.0 0.50.50.5 1.01.01.0 1.51.51.5 2.02.02.0 0.0 0.5 1.0 1.5 2.0 ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿￿ ￿￿circcirc ￿￿ ￿￿circcirc ￿￿￿￿circcirc ￿ ￿circ 30 Kepler 30 1.0 Kepler 1.0 Kepler 1.035 Kepler 1.0 25 25 KeplerSimulated: 0.8 KeplerSimulated: Kepler Kepler 25 MeanSimulated : ~ 0.20.830 butSimulated beware: uncertainty in R⋆ 20 ￿Simulated￿ ￿ :0.25 0.8 0.6 Simulated￿ ￿ 0.25: ￿ ￿ Simulated: 0.8 Simulated￿ : 20 ￿ 0.1 20 ￿ 0.1 ￿ ￿ 0.25 25 ￿ ￿ 0.25 ￿ 0.4 ￿ 0.4 ￿ ￿ ￿ ￿ 0.6 ￿ ￿ ￿ ￿ ￿ 15 ￿ 0.6 0.4 ￿ ￿ 0.6 ￿

CDF 20 15 ￿ 15 ￿ 10 ￿ 0.4 0.4 KS Stat: CDF 0.4

CDF 15 CDF 10 10 0.2 5 KS∆Stat￿ 0.153: 0.210 KS Stat: KS Stat: 0.25 0.0 ∆ ￿ 0.153 0.2 5 0 ∆ ￿ 0.142 0.05 ∆ ￿ 0.251 0.0 0.5 1.0 1.5 2.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0 0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.01.0 1.51.5 2.02.0 0.00.0 0.50.5 1.01.0 1.51.5 2.02.0 0.0 0.5 1.0 1.5 2.0 ￿ ￿circ ￿ ￿circ ￿ ￿circ ￿￿ ￿￿circcirc ￿￿ ￿￿circcirc ￿ ￿circ

30 30 Kepler 1.0 Kepler Kepler 1.0 Kepler ￿ ￿ 25 25 Simulated: 0.8 Simulated￿: ￿ Simulated: 0.8 Simulated: 20 ￿ ￿ ￿ 0.15 0.6 ￿ ￿ 0.15 ￿ 20 ￿ ￿ ￿ 0.45 0.6 ￿ ￿ 0.45 ￿ ￿ 15 0.4 ￿ 15 0.4 CDF 10 CDF 10 0.2 KS Stat: 0.2 KS Stat: 5 ∆ ￿ 0.106 5 ∆ ￿ 0.262 0.0 0.0 0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ

40 1.0 1.0 Kepler Kepler 25 Kepler Kepler 0.8 Simulated: Simulated: 0.8 Simulated: 30 Simulated: 20 ￿ ￿ ￿ 0.2 0.6 ￿ ￿ 0.2 ￿ ￿ ￿ ￿ 0.5 0.6 ￿ ￿ 0.5 ￿ 15 ￿ ￿ 20 0.4 0.4 CDF 10 CDF 10 0.2 KS Stat: 0.2 KS Stat: ∆ ￿ 0.083 5 ∆ ￿ 0.285 0.0 0.0 0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

￿ ￿circ ￿ ￿circ ￿ ￿circ ￿ ￿circ

30 Kepler 1.0 Kepler 25 Simulated: 0.8 Simulated: 20 ￿ ￿ ￿ 0.25 0.6 ￿ ￿ 0.25 ￿ ￿ ￿ ￿ 15 0.4 10 CDF 0.2 KS Stat: 5 ∆ ￿ 0.153 0.0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

￿ ￿circ ￿ ￿circ

￿ ￿ Observations of Extrasolar Planets

1. Kepler transits II. Doppler velocity III. Microlensing IV. Imaging V. Disks HD 7924 b HD 156668 b

Mass = 4.15 ME /sin i P = 4.6455 d K = 1.89 m s−1 e = 0.0 5 ) − 1

0 Velocity (m s (m Velocity −5

−1 RMS = 1.74 m s ri = 0.97 0.0 0.5 1.0 Orbital Phase

HD 97658 b Gl 785 b

Mass = 8.17 ME /sin i P = 9.494 d Mass = 21.6 ME /sin i P = 74.39 d K = 2.75 m s−1 K = 4.07 m s−1 10 e = 0.0 10 e = 0.30 ) ) − 1 − 1 5 5

0 0 Velocity (m s (m Velocity −5 s (m Velocity −5

−1 −10 −1 RMS = 2.78 m s ri = 1.59 −10 RMS = 2.06 m s ri = 1.17 0.0 0.5 1.0 0.0 0.5 1.0 Orbital Phase Howard et al. 2009, 2011a/b, ApJ Orbital Phase NASA-UC Eta-Earth Survey

• RV survey of 238 nearby GKM dwarfs

• Search for low-mass planets (Msini > 3 MEarth) • Constrain population of low-mass planets

G stars K stars M stars 39% G stars 33% K stars 28% M stars

Statistically unbiased (nearly) stellar population: • V < 11 Eta-Earth stars Hipparcos (d < 50 pc) • distance < 25 pc • log R’HK < -4.7 (inactive) Detected planets Candidate planets (FAPs ~ 1-5%)

Candidate planets included in counting planets.

Howard et al. 2010, Science, 330, 653 Key Result: Power-law Mass Distribution

df/dlogM = kMα +0.27 k = 0.39 -0.16 +0.12 α = -0.48 -0.14

Compute Errors assume binomial statistics scale missed planets w/det + cand

0.2

0.0

ï0.2

ï0.4 _ ï0.6

ï0.8

ï1.0

ï1.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Howard et al. 2010, Science, 330, 653 k Giant Planet Occurrence Rates Eta-Earth Survey Cumming et al. (2008)

475 FGK dwarfs Giant Planet Occurrence:

α = –0.31 ± 0.2 β = +0.26 ± 0.1

10.5% occurrence for Msini = 0.3–10 MJ P = 2–2000 days

See also, e.g., Udry et al. (2003) Planet Occurrence vs. M★

Occurrence within 0.25 AU Occurrence within 2.5 AU of small planets of giant planets decreases with M★ increases with M★

Howard et al. (2011c) Johnson et al. (2010) Eccentricities from Doppler Surveys

P > 10 days: At face value,10% of systems have e < 0.05 But corrected for eccentricity bias: 28+/-8% Transits with

✤ Intensity of the star is Doppler ✤ Planet blocks blue shifted and shifted. red shifted side at different Ω★ times.

✤ Results in an “anomalous” Doppler shift of line centers.

Blue shifted Red shifted

λ Transits with stellar rotation

HD 189733

Ω★ 1

1 2 2

Blue shifted Red shifted

1 Blocks blue --> Appears red 2 Blocks red --> Appears blue

Winn et al. 2006 ; Winn 2011 Three examples

Gaudi & Winn 2007 Projected obliquity

✤ Orbits with the same λ = (sky projected) stellar obliquity photometry (same b) can have λ Ω★ different obliquities.

✤ The RM effect depends on λ, b

and Ω★ sin i★ .

✤ The angle λ relates to the true stellar obliquity ψ. b Even retrograde! (HAT-P-14)

Large spin-orbit misalignments Observations of Extrasolar Planets

1. Kepler transits II. Doppler velocity III. Microlensing IV. Imaging V. Disks Gravitational Microlensing α E source at R infinity observer⊾ E M* D lens GM 2R ∆v R ∗ E α ∼ ∼ E ∆v ∼ 2 × E RE c c D 1/2 1/2 M∗ kpc αE ∼ 1 mas !M" " ! D " 1/2 1/2 M∗ D RE ∼ 1AU !M" " !kpc"

RE RE 30 km/s tE ∼ ∼ 1 month vrel !AU "! vrel "

tE √M ∝ tp

tE M tP ∼ tE !M∗

Planetary Microlensing (Binary lens) D ≈ . +0.2 +0.1 5 2−2.9 kpc a ≈ 3.0−1.7 AU M ≈ 0.36+0.03 M +0.1 ∗ −0.28 # M ≈ 1.5−1.2 MJ M∗ ≈ 0.5M" D ≈ 1.5kpc

M1 ≈ 0.71MJ a1 ≈ 2.3AU from orbital M ≈ 0.27M a ≈ 4.6AU e ≈ 0.15+0.17 2 J 2 2 −0.10 motion! Statistics from microlensing

-1.7 1. At fixed M✶, dN/dM ∝M

2. 20 +/- 10% of stars have 5-15 M⊕ at a ~ 1.6-4.3 AU

3. For every star 0.08 M☉ < M✶ < 1 M☉ , there are ~2 free-floating Jupiter-mass objects! Observations of Extrasolar Planets

1. Kepler transits II. Doppler velocity III. Microlensing IV. Imaging V. Disks 2MASS 1207 b

~25 MJ brown dwarf

0.78 arcsec = 41 AU ~5 MJ

VLT 8-m with Infrared Adaptive Optics common -4.7 L ~ 10 L☉ , t ~ 8 Myr → M ~ 5 MJ beta Pic b 8 AU

5.7 AU

2003 2009

line of nodes of the perturbing planet VLT 8-m with L’ Adaptive Optics -3.7 L ~ 10 L☉ , t ~ 12 Myr → M ~ 9 MJ semimajor axis 8-15 AU; consistent with evolving vertical warp Fomalhaut b (L ~ 2 x 10-7 L☉)

e.g., if ωplanet = ωbelt (nested ellipses) not thermal emission from planetary atmosphere aplanet =115AU then eplanet =0.12 40 RJ reflective dust disk? Mplanet =0.5MJ Variable Hα emission? Orbital resonances afford stability HR 8799 d:c = 2:1 resonance A-type star 30-60 Myr old with 4 Super-Jupiters Other possibilities include d:c:b = 4:2:1 e:d:c = 4:2:1

dynamical < 20 Jupiter masses each log(L/L!) log(age / yr) Cloudy spectra unlike spectra Cloudy brown dwarfs brown 7-10 6-7 M M J J Pan-STARRS (once a week, Gemini Planet Imager (GPI) mag 24) 2012 and LSST (once every few days, mag 24.5)

PS1

LSST site Observations of Extrasolar Planets

1. Kepler transits II. Doppler velocity III. Microlensing IV. Imaging V. Disks Reconstructing protoplanetary disks: “Minimum-Mass Solar ” solar composition by mass (Lodders 2003) V E M gas (H,He) : ice (O, C, ...) : rock (Mg, Si, ...) 1 : 0.015 : 0.005 At r ~ 1 AU:

1 M⊕ 2 Σd ∼ 2 ∼ 10 g/cm π AU r-3/2 if just rock (too hot for ice):

2 1 Σ ∼ 10 g/cm × g 0.005 2 ∼ 2000 g/cm

100 AU M ∼ Σ 2πr dr g ! g

∼ 0.03M! Protoplanetary Disks

disk mass ~ 0.001-0.1

Wilner et al. 00

200 AU Minimum-Mass Kepler-11 system 105 (turns out Toomre Q ~ 1) τ 10µm TW Hyd Transitional Disks =0.05

τ10µm ∼ 20 − 200

Calvet et al. 02

LkHa 330

Calvet et al. 05 Brown et al. 08 Pre-main-sequence stars accrete

heated interior

pre-shock flow

Blue excess powered by accretion

Calvet & Gullbring 98 Muzerolle et al. 05 Hartmann et al. 06 Herczeg & Hillenbrand 08 Holes are not empty

• Mild near-IR excesses in some sources τ10µm ∼ 0.002 − 0.05

• Many accrete • Inner molecular gas disks ˙ −2 M ∼ 0.1 × median T Tauri rate Σ(H2) > 0.1gcm at ∼ 0.2AU

Najita et al. 07 Salyk et al. 07