Anolis Paper British Virgin Islands.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Anolis Paper British Virgin Islands.Pdf 870 OTES Caribbeall [aurnal of Science, Vol. 41, No.4, 870-873,2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayaguez The Influence of Temperature and Humidity on Activity Patterns of the Lizards Anolis stratulus and Ameiva exsul in the British Virgin Islands KERRY L. NICHOLSON, SHA 0 M. TORRENCE, DA AM. GHIOCA, JOYDEEP BHATTACHARJEE, ADRIAN E. ANDREI, JENNIFER OWEN, NIKKI Io A. RADKE, AND GAD PERRY. Department of Range, Wildlife, and Fisheries Management, Box 42125, Texas Tech University, Lubbock, Texas 79409. Corresponding author: Gad Perry, email: [email protected] 1 i ABSTRACT.-Many organisms modify their behav- t ior to reduce exposure to unfavorable abiotic condi- tions, but detailed information is available for only a few species. We studied the diurnal activity patterns of AI101is stratulus and Ameiva exsul on Guana Is- land, British Virgin Islands, in order to determine how they are affected by temperature and humidity. We surveyed transects on foot between 0730 and ms. received December 10, 2004; accepted Septem- ber 20, 2005 NOTES 871 1700 h, scanned the ground and vegetation for vis- Guana Island. Activity patterns and their ible lizards and recorded temperature and relative correlates have not been previously re- humidity. Lizard activity patterns were influenced ported for either species, although R. Pow- by ambient conditions and body size. We found an ell and R.W.Henderson (unpublished data) inverse relationship between daily activity patterns observed that activity of A. exsul on Guana and temperatures for juvenile A. stratulus; the cooler the temperature, the more juveniles were present. Island, BVI, primarily occurred between Adult A. stratulus did not show any significant cor- 0930 and 1400hours. relations with temperature and time of day. Tem- Guana Island is a privately-owned wild- perature and abundance were strongly positively life sanctuary characterized by tempera- correlated for A. exsul; the higher the temperature, tures ranging from 27-33 °C, a relative hu- the more abundant A. exsul became. Activity was midity of 60-90% (Dmi'el et al. 1997), and strongly significantly correlated with humidity. Be- an annual rainfall of about 900 mm (G. cause temperature and relative humidity were sig- Perry, unpublished data). The island has an nificantly inversely correlated, we cannot identify area of approximately 300 ha and a maxi- which parameter most impacted lizard activity. mum elevation of 240m (Lazell1996, 2005). Additional details regarding the study is- KEYWORDS.-body size, temperature, relative hu- land are in Lazell (1996,2005). midity, water loss, Guana Island To investigate the activity patterns of A. stratulus and A. exsul, we established Thermoregulation is a primary activity of twelve 50 m transects along existing trails ectotherms. Many reptiles such as lizards during October 2003.A single observer re- act to reduce exposure to unfavorable abi- peatedly surveyed the entire length of each otic conditions by simply moving out of di- transect on foot between 0730 and 1700h. rect sunlight or by increasing their water During each hourly pass, the observer intake. Thus, understanding the relation- would sample the same six stations, located ship between abiotic conditions and activ- 10 m apart. At each station, the observer ity patterns can be important in under- examined the ground and vegetation for standing the ecology of such animals. Here lizards, taking one minute to complete a we report on the daily activity patterns of 180° scan of the vegetation within a 2 m two lizard species in the British Virgin Is- radius. The count was repeated five con- lands (BVI),and the effects of temperature secutive times at each station, for a total of and humidity on those activity patterns. 5 minutes at each location, and the number The two were chosen as representatives of of lizards seen during the most productive the genera Anolis and Ameiva which consti- one-minute count was recorded. Each tran- tute a large percentage of the diurnally ac- sect required 30 min to complete, and a 30 tive lizards in the West Indies. min pause separated consecutive passes, Lizards have often served as model or- resulting in 10 sampling cycles per day. ganisms in ecological studies (e.g.,Milstead Twelve daily samples were used in calcu- 1967; Vitt and Pianka 1994). Because of lating the total numbers of animals ob- their abundance and visible nature, Anolis served. lizards have been especially extensively in- Perry et al. (unpublished MS) reported vestigated (Roughgarden 1995; Reagan that smaller body size makes individual liz- 1996). Anolis stratulus (adult mass approxi- ards more prone to water loss in Anolis cris- mately 1.7 g; Butler and Losos 2002) has tatellus and A. exsul. Based on this work, the received considerable attention, with stud- authors predicted that water conservation ies ranging from habitat use (Dial et al. requirements will force smaller lizards to 1994)to molecular systematics (Jackman et be active during cooler and more humid al. 1999).Ameiva exsul (adult mass approxi- times of day. They suggested that adults mately 40 g; Lewis and Saliva 1987)is also may be able to retain water more efficiently a highly visible and well-studied species than juveniles, who have a larger surface- (Lewis and Saliva 1987). Both species are area-to-body-size ratio. Juveniles should common on the islands of the Greater therefore decrease activity during the hot- Puerto Rico Bank, including our study site, test part of the day to avoid water loss, es- 872 NOTES pecially in water-restricted locations such tivity levels (Fig. 1B) were negatively re- as Guana. To test this prediction, we cat- lated to temperature (rho = -0.684, N = 10, egorized A. stratulus into two size classes, P = 0.029)and positively related to relative juvenile and adult, based on lack of dewlap humidity (rho = 0.720, N = 10, P = 0.019). development in juveniles (G. Perry and Temperature and relative humidity were K. LeVering, unpublished). Size classes of also negatively correlated to one another A. exsul, which is less common on Guana, (rho = 0.848, N = 10, P = 0.002),making it were combined to obtain an adequate difficult to distinguish which factor lizard sample size. To avoid artifacts caused by activity patterns were responding. aberrant climatic conditions such as heavy We encountered 43 A. exsul of all sizes, rainfall, counts were conducted only dur- and their activity pattern was different than ing days with climatic conditions condu- that observed in Anolis. Number of sight- cive to lizard activity. We recorded ambient ings was positively correlated with tem- temperatures (0C) and relative humidities perature for A. exsul (Fig. IC: rho = 0.800; (%) at five minute intervals by placing a N = 10, P = 0.005), and negatively corre- datalogger at the starting point of each lated with relative humidity (rho = -0.804; transect. To avoid making assumptions N = 10, P = 0.005).Few individual Ameiva about data distribution, we used Spear- were active during the cooler parts of the man's non-parametric test of correlation for day and most observations occurred dur- all analyses of relationship between climac- ing the warmer, drier surveys. Activity tic conditions and lizard activity. peaked between 1430h and 1500h.R. Pow- We recorded a total of 140 A. stratulus ell and R.W. Henderson (unpublished) re- sightings during our surveys, of which '56 port similar activity times in A. exsul from were adults and 84 juveniles. Both adult Guana. Similarly, activity in Ameiva eryth- and juvenile A. stratulus showed variation rocephala begins at 0930,peaks midday, and in activity levels during the day. However, ceases by 1600h (Kerr et al. 2005).Thus, the the activity levels of adults (Fig, 1A) were activity pattern we describe, although not not significantly correlated with either tem- previously documented in detail, is not sur- perature (Fig. 1D; rho = 0.534,N = 10, P = prising. 0.112) or relative humidity (rho = -0.222, Although both species are diurnal, A. ex- N = 10, P = 0.537).In contrast, juvenile ac- sul and A. stratulus are most active at dif- ferent times of the day. The physiological "ii 12 C differences between the two species may E ~~12~ 9 ~ 9 partially explain this patter: members of the '0 '0 genus AnoZis are typically thermoconform- ~ 6 .8 6 ."0 Ameiva E 3 E 3 ers, whereas teiid genera such as ~ Z" are normally heliothermic (Hertz 1992; Rivera-Velez and Lewis 1994; Rogowitz "* 12 ,8 E [;31 '0,.. D 73~ 2003). However, this does not explain the .~ 9 i \ 70 ~ ". E '0 1Q30 I ,~67:::J intraspecific difference within A. siratulus. ~ 6 8. ~ ...., ,l ~ Juvenile A. stratulusare active during the E 3 529 ''''\/\. /t 64~ Z" •.... 'v' \,~!" 61 ~ coolest, most humid parts of the day, adult 7:45 10:45 13:45 16:45 7.45 10.45 13.45 16.45 A. straiulus are active throughout the day, Time of day and the much larger A. exsul are preferen- FIG. 1. Numbers of adult (A) and juvenile (B)Anolis tially active during the hottest part of the straiulus and all Ameiva exsul (C) recorded between day. We believe that this difference is re- 0730-1700h on Guana Island, British Virgin Islands, lated to differences in body size and the Bars represent the combined totals from twelve tran- effects they have on water loss rates (Perry sects. Ambient conditions (relative humidity and tem- et al. submitted). Our results thus support perature) measured during a typical study day are Perry's et al. (submitted) conclusion that presented in D. Adult A. stratulus showed similar ac- tivity levels throughout the day, whereas juveniles smaller body size makes individual lizards were less active during the hot and dry midday.
Recommended publications
  • Anolis Aeneus (Bronze Anole)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Anolis aeneus (Bronze Anole) Family: Polychrotidae (Anoles) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Bronze anole, Anolis aeneus. [http://www.trinidad-tobagoherps.org/Anolisaeneus.htm, downloaded 20 October 2012] TRAITS. Anolis aeneus can be distinguished by the blue-green ring around its eyes (Murphy 2011). The species is a medium sized anole, the length of males from the tip of the nose to the anus is 77 mm and females 55 mm (John et al. 2012). They have many lamellae (flaps) on their subdigital toepads. The dewlap (throat fan) extends from underneath their necks and has a pale gray, green or white colour, yellow or orange spots may also be present at the front edge of the dewlap (John et al. 2012). Colour: The dorsal side of the males may be grey, greyish brown, brown or a dull green, a bronze sheen is at times present, light or dark spots may be present in a crosswise pattern. The underside has a dull grey colour. The females may be grey or brown the mid-dorsal region can include a dark single stripe or a transverse stripe, juveniles are dark grey or brown (John et al. 2012). ECOLOGY. This species is endemic to Grenada and has been introduced to Trinidad and Tobago (Wikipedia 2012). It is an arboreal species and can therefore be found mostly on the trunk and branches of shaded trees, it is also populated in urban areas and can be observed on walls, railings and fences (Murphy 2011) it feeds on live insects and invertebrates such as crickets, roaches and spiders.
    [Show full text]
  • Anolis Planiceps (Leaf Anole)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Anolis planiceps (Leaf Anole) Family: Polychrotidae (Anoles and Tree Lizards) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Leaf anole, Anolis planiceps. [http://www.trinidad-tobagoherps.org/Images/planiceps.jpg, downloaded 24 October 2016] TRAITS. Formerly known as Anolis chrysolepis or Norops chrysolepis, the leaf anole measures up to 76mm from snout to vent according (D'Angiolella et al., 2011). The pads of their feet are specialised to help them rest on leaves and trunks (Fig. 1). They have a spotted red patch of skin below theirs jaws, which is extendable, called the dewlap (Fig. 2). The region along the lizard's spine has larger scales than the adjacent areas with those located in the mid-dorsal area being the largest. Along their heads are two prominent ridges as well as ridged (keeled) scales located above the eyes (Fig. 3). The dorsal scales of the leaf anole are several shades of brown while the ventral scales are a pale cream colour; patterns vary greatly within populations (Fig. 4) (Vanzolini and Williams, 1970). Male anoles have longer tails and the females have wider bodies and smaller dewlaps than males (Vitt and Zani, 2011). DISTRIBUTION. Leaf anoles may be found in a relatively wide range from east Venezuela to Guyana, Suriname, Columbia, Trinidad and Brazil (Fig. 5). They are found throughout the island of Trinidad primarily in terrestrial, highly forested areas (D'Angiolella et al, 2011). UWI The Online Guide to the Animals of Trinidad and Tobago Diversity HABITAT AND ECOLOGY.
    [Show full text]
  • And Resurrection of Anolis (Diaphoranolis) Brooksi 1Steven Poe and 2Mason J
    Ofcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 11(2) [General Section]: 1–16 (e141). urn:lsid:zoobank.org:pub:31FA8B4B-718B-4440-AE19-9E1AC95524BD Description of two new species similar to Anolis insignis (Squamata: Iguanidae) and resurrection of Anolis (Diaphoranolis) brooksi 1Steven Poe and 2Mason J. Ryan 1,3Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Arizona Game and Fish Department, 5000 W. Carefree Highway, Phoenix, AZ 85086, USA Abstract.—The spectacular giant anole lizard Anolis insignis is widely distributed but infrequently collected outside of northern Costa Rica. We recently collected several individuals similar to Anolis insignis from localities in Panama and southern Costa Rica. These populations difer from type locality A. insignis in male dewlap color and morphology. We associate one set of these populations with Anolis (Diaphoranolis) brooksi Barbour from Darién, Panama, and describe two additional populations as new species. Keywords. Central America, Costa Rica, lizard, Panama, Reptilia, taxonomy Citation: Poe S and Ryan MJ. 2017. Description of two new species similar to Anolis insignis (Squamata: Iguanidae) and resurrection of Anolis (Diaphoranolis) brooksi. Amphibian & Reptile Conservation 11(2) [General Section]: 1–16 (e141). Copyright: © 2017 Poe and Ryan. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the ofcial and authorized publication sources are recognized and properly credited. The ofcial and authorized publication credit sources, which will be duly enforced, are as follows: ofcial journal title Amphibian & Reptile Conservation; ofcial journal website <amphibian- reptile-conservation.org>.
    [Show full text]
  • Testing Sustainable Forestry Methods in Puerto Rico
    Herpetology Notes, volume 8: 141-148 (2015) (published online on 10 April 2015) Testing sustainable forestry methods in Puerto Rico: Does the presence of the introduced timber tree Blue Mahoe, Talipariti elatum, affect the abundance of Anolis gundlachi? Norman Greenhawk Abstract. The island of Puerto Rico has one of the highest rates of regrowth of secondary forests largely due to abandonment of previously agricultural land. The study was aimed at determining the impact of the presence of Talipariti elatum, a timber species planted for forest enrichment, on the abundance of anoles at Las Casas de la Selva, a sustainable forestry project located in Patillas, Puerto Rico. The trees planted around 25 years ago are fast-growing and now dominate canopies where they were planted. Two areas, a control area of second-growth forest without T. elatum and an area within the T. elatum plantation, were surveyed over an 18 month period. The null hypothesis that anole abundance within the study areas is independent of the presence of T. elatum could not be rejected. The findings of this study may have implications when designing forest management practices where maintaining biodiversity is a goal. Keywords. Anolis gundlachi, Anolis stratulus, Puerto Rican herpetofauna, introduced species, forestry Introduction The secondary growth forest represents a significant resource base for the people of Puerto Rico, and, if At the time of Spanish colonization in 1508, nearly managed properly, an increase in suitable habitat one hundred percent of Puerto Rico was covered in for forest-dwelling herpetofauna. Depending on the forest (Wadsworth, 1950). As a result of forest clearing management methods used, human-altered agro- for agricultural and pastureland, ship building, and fuel forestry plantations have potential conservation wood, approximately one percent of the land surface value (Wunderle, 1999).
    [Show full text]
  • Caribbean Anolis Lizards
    Animal Behaviour 85 (2013) 1415e1426 Contents lists available at SciVerse ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Convergent evolution in the territorial communication of a classic adaptive radiation: Caribbean Anolis lizards Terry J. Ord a,*, Judy A. Stamps b, Jonathan B. Losos c a Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia b Department of Evolution and Ecology, University of California at Davis, Davis, CA, U.S.A. c Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, U.S.A. article info To demonstrate adaptive convergent evolution, it must be shown that shared phenotypes have evolved Article history: independently in different lineages and that a credible selection pressure underlies adaptive evolution. Received 11 December 2012 There are a number of robust examples of adaptive convergence in morphology for which both these Initial acceptance 4 February 2013 criteria have been met, but examples from animal behaviour have rarely been tested as rigorously. Final acceptance 15 March 2013 Adaptive convergence should be common in behaviour, especially behaviour used for communication, Available online 3 May 2013 because the environment often shapes the evolution of signal design. In this study we report on the origins MS. number: A12-00933 of a shared design of a territorial display among Anolis species of lizards from two island radiations in the Caribbean. These lizards perform an elaborate display that consists of a complex series of headbobs and Keywords: dewlap extensions. The way in which these movements are incorporated into displays is generally species adaptation specific, but species on the islands of Jamaica and Puerto Rico also share fundamental aspects in display Anolis lizard design, resulting in two general display types.
    [Show full text]
  • (Squamata: Iguania) from the Central Andes of Colombia
    HERPETOLOGICAL JOURNAL 20: 231–236, 2010 A new species of Anolis of the aequatorialis group (Squamata: Iguania) from the central Andes of Colombia Julián Andrés Velasco1, Paul David A. Gutiérrez-Cárdenas2 & Andrés Quintero-Angel1 1Grupo de Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia 2Grupo Herpetológico de Antioquia (sede Caldas), Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia We describe a new species of the Anolis aequatorialis group from the central Andes of Colombia. The new species, Anolis anoriensis, is similar to A. eulaemus Boulenger, which occurs in both the western and central Andes, and was positioned in the eulaemus subgroup of the aequatorialis group. Anolis anoriensis differs from A. eulaemus in having smaller interparietal scales and a green body coloration with a darker anterior part of the dewlap. We also for the first time describe the coloration of Anolis eulaemus, which is almost exclusively brown with a diffused light brown dewlap. Key words: Anolis anoriensis sp. nov., taxonomy, morphology INTRODUCTION distributions in Colombia and Ecuador: A. antioquiae, A. eulaemus, A. fitchi, A. gemmosus, A. maculigula, A. meg- he Andes of Colombia are a recognized global biodi- alopithecus and A. ventrimaculatus. Tversity hotspot (Myers et al., 2000). However, many In this paper we describe a new species of Anolis of taxonomic groups have been poorly sampled in this re- the eulaemus subgroup of alpha anoles (Etheridge, 1959), gion, despite a large number of species discoveries in the from the Department of Antioquia in the Cordillera Cen- last decade. Anolis lizards are one of these poorly studied tral of Colombia.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Phylogeny, Ecomorphological Evolution, and Historical Biogeography of the Anolis Cristatellus Series
    Uerpetological Monographs, 18, 2004, 90-126 © 2004 by The Herpetologists' League, Inc. PHYLOGENY, ECOMORPHOLOGICAL EVOLUTION, AND HISTORICAL BIOGEOGRAPHY OF THE ANOLIS CRISTATELLUS SERIES MATTHEW C. BRANDLEY^''^'"' AND KEVIN DE QUEIROZ^ ^Sam Noble Oklahoma Museum of Natural History and Department of Zoology, The University of Oklahoma, Norman, OK 73072, USA ^Department of Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20,560, USA ABSTRACT: TO determine the evolutionary relationships within the Anolis cristatellus series, we employed phylogenetic analyses of previously published karyotype and allozyme data as well as newly collected morphological data and mitochondrial DNA sequences (fragments of the 12S RNA and cytochrome b genes). The relationships inferred from continuous maximum likelihood reanalyses of allozyme data were largely poorly supported. A similar analysis of the morphological data gave strong to moderate support for sister relationships of the two included distichoid species, the two trunk-crown species, the grass-bush species A. poncensis and A. pulchellus, and a clade of trunk-ground and grass-bush species. The results of maximum likelihood and Bayesian analyses of the 12S, cyt b, and combined mtDNA data sets were largely congruent, but nonetheless exhibit some differences both with one another and with those based on the morphological data. We therefore took advantage of the additive properties of likelihoods to compare alternative phylogenetic trees and determined that the tree inferred from the combined 12S and cyt b data is also the best estimate of the phylogeny for the morphological and mtDNA data sets considered together. We also performed mixed-model Bayesian analyses of the combined morphology and mtDNA data; the resultant tree was topologically identical to the combined mtDNA tree with generally high nodal support.
    [Show full text]
  • ATOLL RESEARCH BULLETIN NO. 251 BIOGEOGRAPHY of the PUERTO RICAN BANK by Harold Heatwole, Richard Levins and Michael D. Byer
    ATOLL RESEARCH BULLETIN NO. 251 BIOGEOGRAPHY OF THE PUERTO RICAN BANK by Harold Heatwole, Richard Levins and Michael D. Byer Issued by THE SMITHSONIAN INSTITUTION Washington, D. C., U.S.A. July 1981 VIRGIN ISLANDS CULEBRA PUERTO RlCO Fig. 1. Map of the Puerto Rican Island Shelf. Rectangles A - E indicate boundaries of maps presented in more detail in Appendix I. 1. Cayo Santiago, 2. Cayo Batata, 3. Cayo de Afuera, 4. Cayo de Tierra, 5. Cardona Key, 6. Protestant Key, 7. Green Key (st. ~roix), 8. Caiia Azul ATOLL RESEARCH BULLETIN 251 ERRATUM The following caption should be inserted for figure 7: Fig. 7. Temperature in and near a small clump of vegetation on Cayo Ahogado. Dots: 5 cm deep in soil under clump. Circles: 1 cm deep in soil under clump. Triangles: Soil surface under clump. Squares: Surface of vegetation. X's: Air at center of clump. Broken line indicates intervals of more than one hour between measurements. BIOGEOGRAPHY OF THE PUERTO RICAN BANK by Harold Heatwolel, Richard Levins2 and Michael D. Byer3 INTRODUCTION There has been a recent surge of interest in the biogeography of archipelagoes owing to a reinterpretation of classical concepts of evolution of insular populations, factors controlling numbers of species on islands, and the dynamics of inter-island dispersal. The literature on these subjects is rapidly accumulating; general reviews are presented by Mayr (1963) , and Baker and Stebbins (1965) . Carlquist (1965, 1974), Preston (1962 a, b), ~ac~rthurand Wilson (1963, 1967) , MacArthur et al. (1973) , Hamilton and Rubinoff (1963, 1967), Hamilton et al. (1963) , Crowell (19641, Johnson (1975) , Whitehead and Jones (1969), Simberloff (1969, 19701, Simberloff and Wilson (1969), Wilson and Taylor (19671, Carson (1970), Heatwole and Levins (1973) , Abbott (1974) , Johnson and Raven (1973) and Lynch and Johnson (1974), have provided major impetuses through theoretical and/ or general papers on numbers of species on islands and the dynamics of insular biogeography and evolution.
    [Show full text]
  • History of Squamate Lizard Dac
    History of Squamate Lizard Dactyloidae from the Eastern Caribbean, Origins of Anolis from Martinique, Zanndoli Matinik (Dactyloa roquet) Marcel Bourgade To cite this version: Marcel Bourgade. History of Squamate Lizard Dactyloidae from the Eastern Caribbean, Origins of Anolis from Martinique, Zanndoli Matinik (Dactyloa roquet). 2020. hal-02469738 HAL Id: hal-02469738 https://hal.archives-ouvertes.fr/hal-02469738 Submitted on 6 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Martinique, January 2020 History of Squamate Lizard Dactyloidae from the Eastern Caribbean Origins of Anolis from Martinique, Zanndoli Matinik (Dactyloa roquet) by Marcel BOURGADE 56 islet of Pointe Marin, 97227 Sainte-Anne, Martinique, Eastern Caribbean [email protected] 1 Summary – The Anolis of Martinique, Zanndoli (in Martinique), the species of reptile lizard Dactyloa roquet represents with the species of amphibian Hylode of Johnstonei, Eleutherodactylus johnstonei, the two species of herpetofauna endemic to the eastern Caribbean, the most widely widespread and present in large numbers throughout the territory of Martinique. The history of the Dactyloidae of the eastern Caribbean that we retrace is based on the most recent data publications, in terms of research in molecular systematics, crossed with the data of the geological history of this geographical region of the Eastern Caribbean.
    [Show full text]
  • Scientific Survey of Porto Rico and the Virgin Islands
    : NEW YORK ACADEMY OF SCIENCES SCIENTIFIC SURVEY OF Porto Rico and the Virgin Islands VOLUME X NEW YORK Published by the Academy 1930 CONTENTS OF VOLUME X Page Title-page. Contents ^ Dates of Publication of Parts " List of Illustrations iv Amphibians and Land Reptiles of Porto Rico, with a List of Those Reported from the Virgin Islands. By Karl Patterson Schmidt 1 The Fishes of Porto Rico and the Virgin Islands—Branchiostomidae to Sciae- nidae. By J. T. Nichols 161 The Fishes of Porto Rico and the Virgin Islands—Pomacentridae to Ogcoce- phaUdae. By. J. T. Nichols 297 The Ascidians of Porto Rico and the Virgin Islands. By Willard G. Van Name 401 3 Index 5 ' Dates of Publication of Parts Part 1, November 22, 1928. ^ Part 2, September 10, 1929. ^"^ *7 jL mL. Part 3, March 15, 1930 Part 4, August 1, 1930 (iii) 'X -«^- AMPHIBIANS AND LAND REPTILES OF PORTO RICO With a List of Those Reported from the Virgin Islands By Karl Patterson Schmidt contents Page Introduction 3 Itinerary and collections made 4 Other material examined 4 Plan of work 5 Acknowledgments 6 Porto Rican herpetology since 1904 6 Lists of the amphibians and land reptiles of Porto Rico and the adjacent islands 7 Habitat associations and faunal subdivisions 9 Origin and relations of the Porto Rican herpetological fauna 12 Systematic account of the species 30 Class Amphibia 30 Order SaUentia 30 Family Bufonidae 30 Key to the genera of Porto Rican frogs and toads 30 Bufo Laurenti 31 Key to the Porto Rican species of true toads 31 Bufo lemur (Cope) 31 Bufo marinus (Linne) 34 Leptodactylus
    [Show full text]
  • Predation of White Anole (Anolis Laeviventris) by Blue-Crowned Motmot (Momotus Momota) in a Montane Forest Reserve in Veracruz, Mexico
    Herpetology Notes, volume 7: 721-722 (2014) (published online on 21 December 2014) Predation of White Anole (Anolis laeviventris) by Blue-crowned motmot (Momotus momota) in a montane forest reserve in Veracruz, Mexico Adriana Sandoval-Comte*, Alma Patricia Degante-González and Diego Santiago-Alarcon Anole lizards are common, widely distributed, and a dead lizard in its beak (Figure 1). The lizard was they are eaten by spiders, frogs, other lizards, snakes, identified as a female Anolis laeviventris (the dewlap birds, and mammals (Losos and Greene, 2009). Anolis was not well-developed as in males, but we were able laeviventris is distributed from Southeastern Mexico to observe the characteristic coloration of the species), to Central America (EOL, 2014). Here we report a a common reptile in this region that is characterized by predation event on an adult A. laeviventris by a Blue- having a white dewlap. Adults and juveniles are usually crowned motmot (Momotus momota). The White anole found foraging on leaves, which is the period when is a common arboreal lizard in the central region of Veracruz, Mexico. Its natural history is poorly known, however, and we have no information regarding its ecological interactions. The members of the genus Momotus (Aves: Momotidae) are large and sedentary birds presumably requiring less relative energy intake compared to smaller birds (Jones 2009). M. momota is found mostly in cloud montane forest (Orejuela, 1980) of Middle and South America (Greeney et al., 2006, Snow 2001, Stiles 2009, Skutch 1945). M. momota is omnivorous, feeding mainly on arthropods and fruits, its diet may also include frogs (Master 1999), snakes (Stiles and Skutch 1989), mammals (Delgado-V.
    [Show full text]