Mobile Elements in Ray-Finned Fish Genomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comprehensive Phylogeny of Ray-Finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data
Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data Lily C. Hughesa,b,1,2, Guillermo Ortía,b,1,2, Yu Huangc,d,1, Ying Sunc,e,1, Carole C. Baldwinb, Andrew W. Thompsona,b, Dahiana Arcilaa,b, Ricardo Betancur-R.b,f, Chenhong Lig, Leandro Beckerh, Nicolás Bellorah, Xiaomeng Zhaoc,d, Xiaofeng Lic,d, Min Wangc, Chao Fangd, Bing Xiec, Zhuocheng Zhoui, Hai Huangj, Songlin Chenk, Byrappa Venkateshl,2, and Qiong Shic,d,2 aDepartment of Biological Sciences, The George Washington University, Washington, DC 20052; bNational Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cShenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute Academy of Marine Sciences, Beijing Genomics Institute Marine, Beijing Genomics Institute, 518083 Shenzhen, China; dBeijing Genomics Institute Education Center, University of Chinese Academy of Sciences, 518083 Shenzhen, China; eChina National GeneBank, Beijing Genomics Institute-Shenzhen, 518120 Shenzhen, China; fDepartment of Biology, University of Puerto Rico–Rio Piedras, San Juan 00931, Puerto Rico; gKey Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306 Shanghai, China; hLaboratorio de Ictiología y Acuicultura Experimental, Universidad Nacional del Comahue–CONICET, 8400 Bariloche, Argentina; iProfessional Committee of Native Aquatic Organisms and Water Ecosystem, China Fisheries Association, 100125 Beijing, China; jCollege of Life Science and Ecology, Hainan Tropical Ocean University, 572022 Sanya, China; kYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China; and lComparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673 Singapore Edited by Scott V. -
CAT Vertebradosgt CDC CECON USAC 2019
Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Global Patterns of Ranavirus Detections
NOTE Global patterns of ranavirus detections Jesse L. Brunnera*, Deanna H. Olsonb, Matthew J. Grayc, Debra L. Millerd, and Amanda L.J. Duffuse aSchool of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA; bUSDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331-8550, USA; cDepartment of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; dCollege of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; eDepartment of Natural Sciences, Gordon State College, Barnesville, GA 30204, USA *[email protected] Abstract Ranaviruses are emerging pathogens of poikilothermic vertebrates. In 2015 the Global Ranavirus Reporting System (GRRS) was established as a centralized, open access, online database for reports of the presence (and absence) of ranavirus around the globe. The GRRS has multiple data layers (e.g., location, date, host(s) species, and methods of detection) of use to those studying the epidemiol- ogy, ecology, and evolution of this group of viruses. Here we summarize the temporal, spatial, diag- nostic, and host-taxonomic patterns of ranavirus reports in the GRRS. The number, distribution, and host diversity of ranavirus reports have increased dramatically since the mid 1990s, presumably in response to increased interest in ranaviruses and the conservation of their hosts, and also the availability of molecular diagnostics. Yet there are clear geographic and taxonomic biases among the OPEN ACCESS reports. We encourage ranavirus researchers to add their studies to the portal because such collation can provide collaborative opportunities and unique insights to our developing knowledge of this For personal use only. -
Comparative Proteomic Analysis of Erythropoiesis Tissue Head Kidney Among Three Antarctic Fish Species
Comparative Proteomic Analysis of Erythropoiesis Tissue Head Kidney Among three Antarctic Fish Species Ruonan Jia Shanghai Ocean University Shaojun Huang Shanghai Ocean University Wanying Zhai Shanghai Ocean University Shouwen Jiang Shanghai Ocean University Wenhao Li Shanghai Ocean University Faxiang Wang Shanghai Ocean University Qianghua Xu ( [email protected] ) Shanghai Ocean University https://orcid.org/0000-0003-0351-1765 Research Article Keywords: Antarctic icesh, erythropoiesis, hematopoiesis, head kidney, immunity Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-504121/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Antarctic icesh is the only known vertebrate species that lacks oxygen-carrying hemoglobin and functional erythrocytes. To reveal the unique hematopoietic process of icesh, we used an integrated approach including tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify the dynamic changes in the head kidney whole proteome of a white-blooded icesh, Chionodraco hamatus, compared to those in two other red-blooded Antarctic sh, Trematomus bernacchii and Notothenia coriiceps. Of the 4,672 identied proteins, in the Antarctic ice sh head kidney, 123 proteins were signicantly up-regulated and 95 proteins were down-regulated. The functional grouping of differentially expressed proteins based on KEGG pathway analysis shows that white blood sh and red blood sh have signicant differences in erythropoiesis, heme biogenesis, leucocyte and platelet cell development. The proteins involved in the hematopoietic process in icesh showed a clear trend of downregulation of erythroid lineage marker proteins and upregulation of lymphoid and megakaryocytic lineage marker proteins, including CD9, ITGB2, and MTOR, which suggests a shift in hematopoiesis in the icesh head kidney due to the loss of erythrocytes. -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
Phylogenetic Relationships Within the Speciose Family Characidae
Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. -
Someone Like Me: Size-Assortative Pairing and Mating in an Amazonian Fish, Sailfin Tetra Crenuchus Spilurus
RESEARCH ARTICLE Someone like me: Size-assortative pairing and mating in an Amazonian fish, sailfin tetra Crenuchus spilurus 1,2 1 1 Elio de Almeida BorghezanID *, Kalebe da Silva Pinto , Jansen Zuanon , Tiago Henrique da Silva Pires1 1 LaboratoÂrio de Ecologia Comportamental e EvolucËão, Instituto Nacional de Pesquisas da AmazoÃnia, Av. Andre ArauÂjo, Manaus, AM, Brazil, 2 Wildlife Research Center of Kyoto University, Sakyo-ku, Kyoto, Japan a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract In the absence of constraints, preference for larger mates is expected to evolve, as larger individuals are typical of higher potential fitness. Large females are often more fecund and OPEN ACCESS carry larger eggs (which result in higher number and better quality of offspring), whereas Citation: Borghezan EdA, Pinto KdS, Zuanon J, large males usually have more conspicuous ornaments and are better at defending Pires THdS (2019) Someone like me: Size- resources. However, intrasexual competition can constrain the access to larger partners, assortative pairing and mating in an Amazonian especially when opportunities for mate takeover abound. Here we investigate the relation- fish, sailfin tetra Crenuchus spilurus. PLoS ONE 14 ship between individual's size and mate choice in relation to one's own size and their (9): e0222880. https://doi.org/10.1371/journal. pone.0222880 respective mate's size using the sailfin tetra, a sexually dimorphic Amazonian fish species. We show that ornaments of larger males are exponentially more conspicuous, and larger Editor: John A. B. Claydon, Institute of Marine Research, NORWAY females are more fecund and carry larger eggs. Contrary to expectation, neither males nor females associated for longer with the larger of two offered potential mates. -
Pdf 475.12 K
International Journal of Aquatic Science ISSN: 2008-8019 Vol. 4, No. 2, 44-58, 2013 Three new species of Pseudorhabdosynochus (Monogenea: Diplectanidae) from Vietnamese grouper (Epinephelus spp.) (Perciformes: Serranidae) Binh T. Dang1*, Glenn A. Bristow2, Christoffer Schander2 and Bjørn Berland2 1) Institute for Biotechnology and Environment, University of Nha Trang, Nha Trang, Vietnam 2) Department of Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway Received: 15 December 2012 Accepted: 5 February 2013 Published: 27 June 2013 Abstract: Three new species of monogenea are described from cultured and wild grouper from Nha Trang and Cam Ranh Bays, Vietnam. Pseudorhabdosynochus nhatrangensis n. sp and P. vietnamensis n. sp. were found on wild and cultured Epinephelus coioides and E. bleekeri, while Pseudorhabdosynochus brunei n. sp. parasitizes wild E. bruneus. P. nhatrangensis n. sp. is characterized by a sclerotized vagina with cup-shaped trumpet, open at the distal part, followed by a proximal tubular region, twisted to a circle at the posterior end and extending into thin branches; squamodiscs with 10 rows of rodlets with the central row being a closed circle. The tegument is scaly. P. vietnamensis n. sp. has a very large male copulatory organ with the tube being widened and slightly curved posteriorly. A sclerotized vagina comprised of an anterior trumpet, followed by convoluted structure which twists and divides into two distinct chambers. The central row of the squamodiscs forms a closed circle with a central core present. A heavily scaled tegument with scales on ventral and dorsal surfaces extends from the squamodiscs to the level of the ovary. -
Sex Reversal and Masculinization According to Growth in Longtooth Grouper Epinephelus Bruneus
Dev. Reprod. Vol. 17, No. 2, 79~85, June, 2013 http://dx.doi.org/10.12717/DR.2013.17.2.079 ISSN 1226-6752 (Print)․ISSN 2287-7967 (Online) Sex Reversal and Masculinization according to Growth in Longtooth Grouper Epinephelus bruneus Seong-Rip Oh, Hyeong-Cheol Kang, Chi-Hoon Lee, Sang-Woo Hur and †Young-Don Lee Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea ABSTRACT : To understand the sex reversal characteristics in the longtooth grouper (Epinephelus bruneus), this study examined the sex reversal and artificial masculinization of wild caught E. bruneus reared in indoor rearing tank after a 17α-methyltestosterone injection. To domesticate a broodstock, 64 wild caught E. bruneus, between 47.0 to 110.0 cm in total length and from 1.5 to 21.4 kg in body weight, were reared in indoor rearing tank (4.0 to 5.0 m wide, and 2.5 to 3.0 m depth) for four years. Seven specimens showed sex reversal from female to male during indoor rearing condition, whose total length and body weights were from 63.0 to 99.0 cm and from 4.4 to 13.2 kg, respectively. After inducing artificial masculinization in 14 female E. bruneus with a 17α-methyltestosterone (2.0 mg/kg BW) implants for 3 years, spermiation occurred in 9 specimens (total length: 54.0 to 68.0 cm, body weight: 2.3 to 4.3 kg). Among the female to male sex reversals, two specimens returned back to being female, whose body weights were 2.8 kg (initially 2.6 kg) and 2.7 kg (initially 2.3 kg). -
The Evolutionary Life History of P Transposons: from Horizontal Invaders to Domesticated Neogenes
Chromosoma (2001) 110:148–158 DOI 10.1007/s004120100144 CHROMOSOMA FOCUS Wilhelm Pinsker · Elisabeth Haring Sylvia Hagemann · Wolfgang J. Miller The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes Received: 5 February 2001 / In revised form: 15 March 2001 / Accepted: 15 March 2001 / Published online: 3 May 2001 © Springer-Verlag 2001 Abstract P elements, a family of DNA transposons, are uct of their self-propagating lifestyle. One of the most known as aggressive intruders into the hitherto uninfected intensively studied examples is the P element of Dro- gene pool of Drosophila melanogaster. Invading through sophila, a family of DNA transposons that has proved horizontal transmission from an external source they useful not only as a genetic tool (e.g., transposon tag- managed to spread rapidly through natural populations ging, germline transformation vector), but also as a model within a few decades. Owing to their propensity for rapid system for investigating general features of the evolu- propagation within genomes as well as within popula- tionary behavior of mobile DNA (Kidwell 1994). P ele- tions, they are considered as the classic example of self- ments were first discovered as the causative agent of hy- ish DNA, causing havoc in a genomic environment per- brid dysgenesis in Drosophila melanogaster (Kidwell et missive for transpositional activity. Tracing the fate of P al. 1977) and were later characterized as a family of transposons on an evolutionary scale we describe differ- DNA transposons -
Niche Enlargement As a Consequence of Co-Existence
Niche enlargement as a consequence of co-existence: a case study Mazzoni, R.a*, Marques, PS.a, Rezende, CF.a,c and Iglesias-Rios, R.b aDepartamento de Ecologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, CEP 20550-013, Rio de Janeiro, RJ, Brazil bDepartamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, CP 68020, Rio de Janeiro, RJ, Brazil cDepartamento de Biologia, Universidade Federal do Ceará – UFC, CEP 60455-970, Fortaleza, CE, Brazil *e-mail: [email protected] Received March 22, 2011 – Accepted July 04, 2011 – Distributed May 31, 2012 (With 4 figures) Abstract Spatio-temporal changes in the diet, niche breadth and niche overlap of two species of Characidium from three different sites along a Neotropical coastal stream were studied during a dry and rainy season. Seasonal changes were restricted to the occurrence of plant items in the stomach contents. The relative importance of food items in the diet of both species varied across sites, but Diptera, Ephemeroptera, Simuliidae, Trichoptera and Coleoptera larvae were always the main prey items. Contrary to the expected pattern, values of the niche breadth were higher at the site where Characidium species co-existed and niche overlapped at this site indicated 52% (p = 0.52) of feeding overlap. Keywords: neotropical characidae, coastal stream, close related species. Ampliação do nicho como consequência da co-existência: um estudo de caso Resumo Variações espaço-temporal na dieta, na amplitude e na sobreposição de nicho foram estudadas para duas espécies de Characidium de três localidades distintas de um riacho costeiro da região Neotropical, considerando-se as estações seca e chuvosa.