Structural Differences in Gut Bacteria Communities in Developmental
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Salt Accumulating Organisms from Winery Wastewater
Identification of salt accumulating organisms from winery wastewater FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: UA08/01 Principal Investigator: Paul Grbin Research Organisation: University of Adelaide Date: 22/09/10 1 Identification of salt accumulating organisms from winery wastewater Dr Paul R Grbin Dr Kathryn L Eales Dr Frank Schmid Assoc. Prof. Vladimir Jiranek The University of Adelaide School of Agriculture, Food and Wine PMB 1, Glen Osmond, SA 5064 AUSTRALIA Date: 15 January 2010 Publisher: University of Adelaide Disclaimer: The advice presented in this document is intended as a source of information only. The University of Adelaide (UA) accept no responsibility for the results of any actions taken on the basis of the information contained within this publication, nor for the accuracy, currency or completeness of any material reported and therefore disclaim all liability for any error, loss or other consequence which may arise from relying on information in this publication. 2 Table of contents Abstract 3 Executive Summary 4 Background 5 Project Aims and Performance Targets 6 Methods 7 Results and Discussion 11 Outcomes and Conclusions 23 Recommendations 24 Appendix 1: Communication Appendix 2: Intellectual Property Appendix 3: References Appendix 4: Staff Appendix 5: Acknowledgements Appendix 6: Budget Reconciliation 3 Abbreviations: COD: Chemical oxygen demand Ec: Electrical conductivity FACS: Fluorescence activated cell sorting HEPES: 4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid OD: Optical density PBFI: Potassium benzofuran isophthalate PI: Propidium iodide SAR: Sodium adsorption ratio WWW: Winery wastewater Abstract: In an attempt to find microorganisms that would remove salts from biological winery wastewater (WWW) treatment plants, 8 halophiles were purchased from culture collections, with a further 40 isolated from WWW plants located in the Barossa Valley and McLaren Vale regions. -
Diversity of Culturable Moderately Halophilic and Halotolerant Bacteria in a Marsh and Two Salterns a Protected Ecosystem of Lower Loukkos (Morocco)
African Journal of Microbiology Research Vol. 6(10), pp. 2419-2434, 16 March, 2012 Available online at http://www.academicjournals.org/AJMR DOI: 10.5897/ AJMR-11-1490 ISSN 1996-0808 ©2012 Academic Journals Full Length Research Paper Diversity of culturable moderately halophilic and halotolerant bacteria in a marsh and two salterns a protected ecosystem of Lower Loukkos (Morocco) Imane Berrada1,4, Anne Willems3, Paul De Vos3,5, ElMostafa El fahime6, Jean Swings5, Najib Bendaou4, Marouane Melloul6 and Mohamed Amar1,2* 1Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique- CNRST, Rabat, Morocco. 2Moroccan Coordinated Collections of Micro-organisms/Laboratory of Microbiology and Molecular Biology, Rabat, Morocco. 3Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium. 4Faculté des sciences – Université Mohammed V Agdal, Rabat, Morocco. 5Belgian Coordinated Collections of Micro-organisms/Laboratory of Microbiology of Ghent (BCCM/LMG) Bacteria Collection, Ghent University, Ghent, Belgium. 6Functional Genomic plateform - Unités d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique- CNRST, Rabat, Morocco. Accepted 29 December, 2011 To study the biodiversity of halophilic bacteria in a protected wetland located in Loukkos (Northwest, Morocco), a total of 124 strains were recovered from sediment samples from a marsh and salterns. 120 isolates (98%) were found to be moderately halophilic bacteria; growing in salt ranges of 0.5 to 20%. Of 124 isolates, 102 were Gram-positive while 22 were Gram negative. All isolates were identified based on 16S rRNA gene phylogenetic analysis and characterized phenotypically and by screening for extracellular hydrolytic enzymes. The Gram-positive isolates were dominated by the genus Bacillus (89%) and the others were assigned to Jeotgalibacillus, Planococcus, Staphylococcus and Thalassobacillus. -
Microbial Diversity of Soda Lake Habitats
Microbial Diversity of Soda Lake Habitats Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Susanne Baumgarte aus Fritzlar 1. Referent: Prof. Dr. K. N. Timmis 2. Referent: Prof. Dr. E. Stackebrandt eingereicht am: 26.08.2002 mündliche Prüfung (Disputation) am: 10.01.2003 2003 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Baumgarte, S., Moore, E. R. & Tindall, B. J. (2001). Re-examining the 16S rDNA sequence of Halomonas salina. International Journal of Systematic and Evolutionary Microbiology 51: 51-53. Tagungsbeiträge Baumgarte, S., Mau, M., Bennasar, A., Moore, E. R., Tindall, B. J. & Timmis, K. N. (1999). Archaeal diversity in soda lake habitats. (Vortrag). Jahrestagung der VAAM, Göttingen. Baumgarte, S., Tindall, B. J., Mau, M., Bennasar, A., Timmis, K. N. & Moore, E. R. (1998). Bacterial and archaeal diversity in an African soda lake. (Poster). Körber Symposium on Molecular and Microsensor Studies of Microbial Communities, Bremen. II Contents 1. Introduction............................................................................................................... 1 1.1. The soda lake environment ................................................................................. -
Construction of Probe of the Plant Growth-Promoting Bacteria Bacillus Subtilis Useful for fluorescence in Situ Hybridization
Journal of Microbiological Methods 128 (2016) 125–129 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization Luisa F. Posada a,JavierC.Alvarezb, Chia-Hui Hu e, Luz E. de-Bashan c,d,e, Yoav Bashan c,d,e,⁎ a Department of Process Engineering, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia b Departament of Biological Sciences, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia c The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA d Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico e Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA article info abstract Article history: Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. Received 13 April 2016 PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Received in revised form 30 May 2016 Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), be- Accepted 31 May 2016 tween this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was be- Available online 2 June 2016 tween nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed Keywords: probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with Bacillus subtilis B. -
Production of 2-Phenylethylamine by Decarboxylation of L-Phenylalanine in Alkaliphilic Bacillus Cohnii
J. Gen. Appl. Microbiol., 45, 149–153 (1999) Production of 2-phenylethylamine by decarboxylation of L-phenylalanine in alkaliphilic Bacillus cohnii Koei Hamana* and Masaru Niitsu1 School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi 371–8514, Japan 1Faculty of Pharmaceutical Sciences, Josai University, Sakado 350–0290, Japan (Received February 22, 1999; Accepted August 16, 1999) Cellular polyamine fraction of alkaliphilic Bacillus species was analyzed by HPLC. 2-Phenylethyl- amine was found selectively and ubiquitously in the five strains belonging to Bacillus cohnii within 27 alkaliphilic Bacillus strains. A large amount of this aromatic amine was produced by the decar- boxylation of L-phenylalanine in the bacteria and secreted into the culture medium. The production of 2-phenylethylamine may serve for the chemotaxonomy of alkaliphilic Bacillus. Key Words——alkaliphilic Bacillus; phenylethylamine; polyamine In the course of our study on polyamine distribution sequence data of bacilli belonging to the genera Bacil- profiles as a chemotaxonomic marker, we have shown lus, Sporolactobacillus, and Amphibacillus, including that diamines such as diaminopropane, putrescine, various neutrophilic, alkaliphilic, and acidophilic and cadaverine, and a guanidinoamine, agmatine, species (Nielsen et al., 1994, 1995; Yumoto et al., sporadically spread within gram-positive bacilli (Hama- 1998). Therefore alkaliphilic members of Bacillus are na, 1999; Hamana et al., 1989, 1993). Mesophilic phylogenetically heterogeneous. In the present study, Bacillus species, including some alkaliphilic strains, we describe the distribution of this amine and the de- and Brevibacillus, Paenibacillus, Virgibacillus, Sporo- carboxylase activity for phenylalanine to produce this lactobacillus, and halophilic Halobacillus species con- amine within newly validated alkaliphilic Bacillus tained spermidine as the major polyamine and lacked species. -
Biological Influence of Cry1ab Gene Insertion on the Endophytic Bacteria Community in Transgenic Rice
Turkish Journal of Biology Turk J Biol (2018) 42: 231-239 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1708-32 Biological influence of cry1Ab gene insertion on the endophytic bacteria community in transgenic rice 1 1 1,2, Xu WANG , Mengyu CAI , Yu ZHOU * 1 State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, P.R. China 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China Received: 13.08.2017 Accepted/Published Online: 19.04.2018 Final Version: 13.06.2018 Abstract: The commercial release of genetically modified (GMO) rice for insect control in China is a subject of debate. Although a series of studies have focused on the safety evaluation of the agroecosystem, the endophytes of transgenic rice are rarely considered. Here, the influence of endophyte populations and communities was investigated and compared for transgenic and nontransgenic rice. Population-level investigation suggested that cry1Ab gene insertion influenced to a varying degree the rice endophytes at the seedling stage, but a significant difference was only observed in leaves of Bt22 (Zhejiang22 transgenic rice) between the GMO and wild-type rice. Community-level analysis using the 16S rRNA gene showed that strains of the phyla Proteobacteria and Firmicutes were the predominant groups occurring in the three transgenic rice plants and their corresponding parents. -
A Report of 26 Unrecorded Bacterial Species in Korea, Belonging to the Bacteroidetes and Firmicutes
Journal166 of Species Research 5(1):166-178, 2016JOURNAL OF SPECIES RESEARCH Vol. 5, No. 1 A report of 26 unrecorded bacterial species in Korea, belonging to the Bacteroidetes and Firmicutes Haneul Kim1, Jung-Hoon Yoon2, Chang-Jun Cha3, Chi Nam Seong4, Wan-Taek Im5, Kwang Yeop Jahng6, Che Ok Jeon7, Seung Bum Kim8 and Kiseong Joh1,* 1Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Korea 2Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea 3Department of Biotechnology, Chung-Ang University, Anseong 17546, Korea 4Department of Biology, Sunchon National University, Suncheon 57922, Korea 5Department of Biotechnology, Hankyong National University, Anseong 17579, Korea 6Department of Life Sciences, Chonbuk National University, Jeonju 54896, Korea 7Department of Life Science, Chung-Ang University, Seoul 06974, Korea 8Department of Microbiology, Chungnam National University, Daejeon 34134, Korea *Correspondent: [email protected] An outcome of the study to discover indigenous prokaryotic species in Korea, a total of 26 bacterial species assigned to the classes Bacteroidetes and Firmicutes were isolated from diverse environmental samples collected from soil, tidal flat, freshwater, seawater, wetland, plant roots, and fermented foods. From the high 16S rRNA gene sequence similarity (>99.0%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 26 species have been described in Korea; therefore 14 strains for the order Flavobacteriales and two strains for the order Cytophagales were assigned to the class Bacteroidetes, and 8 strains for the order Bacillales and 4 strains for the order Lactobacillales were assigned to the class Firmicutes are reported for new bacterial species found in Korea. -
Orthoptera: Gryllotalpidae)
Türk. biyo. müc. derg., 2013, 4 (2): 89-108 ISSN 2146-0035 Orijinal araştırma (Original article) Identification and pathogenicity of bacteria from Gryllotalpa gryllotalpa L. (Orthoptera: Gryllotalpidae) Kazim SEZEN1, Serife ISCI1, Hacer MURATOGLU2, Kadriye INAN2, Zihni DEMIRBAG1 Gryllotalpa gryllotalpa L. (Orthoptera: Gryllotalpidae)’den izole edilen bakterilerin tanımlanması ve patojenitesi Özet: Gryllotalpa gryllotalpa (Orthoptera: Gryllotalpidae)’nın bakteriyel mikrobiyotası, araştırılmıştır ve G. gryllotalpa’nın nimflerinden 10 farklı bakteriyel aerobik tür izole edilmiştir. G. gryllotalpa en önemli tarım zararlılarından biridir. Bu çalışmada, bakterilerin morfolojik, fizyolojik ve biyokimyasal özelliklerini ve API 20E ve API 50CH panel test sistemleri sayesinde metabolik enzim profillerini belirledik. Ayrıca, izolatların moleküler seviyede belirlenmesi için 16S rRNA geni dizi analizi ve Hiper değişken (HV) analizleri uygulanmıştır. Bakteriyel türler, Bacillus weihenstephanensis (Gg1), Serratia ureilytica (Gg2), Bacillus simplex (Gg3), Bacillus nanhaiensis (Gg5), Bacillus sp. (Gg6), Bacillus gibsonii (Gg7), Citrobacter braakii (Gg8), Paenibacillus sp. (Gg9), Enterobacter sp. (Gg10), and Providencia rettgeri (Gg11) olarak belirlenmiştir. Bütün bakteriyel türler, on gün boyunca 3.6×109 hücre/ml dozda G. gryllotalpa’nın nimflerine karşı test edilmiştir. Bu sonuçlar, özellikle B. weihenstephanensis (Gg1) ve Bacillus nanhaiensis (Gg5) bakterilerinin, G. gryllotalpa’nın mikrobiyal mücadelesinde değerli bir etken olabileceğini göstermiştir. -
A Report of 38 Unrecorded Bacterial Species in Korea Within the Classes Bacilli and Deinococci Isolated from Various Sources
Journal176 of Species Research 8(2):176-190, 2019JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 A report of 38 unrecorded bacterial species in Korea within the classes Bacilli and Deinococci isolated from various sources Heeyoung Kang1, Haneul Kim1, Jin-Woo Bae2, Soon Dong Lee3, Wonyong Kim4, Myung Kyum Kim5, Chang-Jun Cha6, Hana Yi7, Wan-Taek Im8, Seung Bum Kim9, Chi Nam Seong10 and Kiseong Joh1,* 1Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea 2Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea 3Department of Science Education, Jeju National University, Jeju 63243, Republic of Korea 4Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea 5Department of Bio & Environmental Technology, Seoul Women’s University, Seoul 01797, Republic of Korea 6Department of Bitechnology, Chung-Ang University, Anseong 17546, Republic of Korea 7School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea 8Department of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea 9Department of Microbiology, Chungnam National University, Daejeon 34134, Republic of Korea 10Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea *Correspondent: [email protected] A total of 38 bacterial strains within the classes Bacilli and Deinococci were isolated from various sources in Korea. Samples were collected from animal intestine, urine, soil, tidal flat mud, and kimchi. In the sequence comparison and phylogenetic analysis of 16S rRNA sequences, the 38 isolates were assigned to the classes Bacilli and Deinococci with sequence similarities more than 98.7%. Twenty-four strains and 13 strains were classified the order Bacillales and Lactobacillales in the class Bacilli, respectively. -
Diversity and Evolutionary Dynamics of Spore Coat Proteins on Spore-Forming Species of Bacillales
UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA EXPERIMENTAL YACHAY Escuela de Ciencias Biológicas e Ingeniería TÍTULO: Diversity and Evolutionary Dynamics of Spore Coat Proteins on Spore-forming Species of Bacillales Trabajo de integración curricular presentado como requisito para la obtención del título de Biólogo Autor: Henrry Patricio Secaira Morocho Tutor: Ph.D. José Antonio Castillo Urcuquí, marzo 2020 Agradecimiento Me gustaría agradecer a mi mentor de tesis, el Dr. José Antionio Castillo, por su inestimable apoyo y orientación durante esta investigación y redacción de tesis. Además, me gustaría agradecer a mis profesores en Yachay Tech por todas las clases, lecciones y consejos durante mi carrera. Estoy profundamente agradecido con mis amigos, compañeros de clase y familia, especialmente con mi madre y su apoyo constante durante estos años. Henrry Patricio Secaira Morocho Resumen Entre los miembros del orden de Bacillales, hay varias especies capaces de formar una estructura llamada endospora. Las endosporas permiten que las bacterias sobrevivan bajo condiciones de crecimiento desfavorables. Además, las endosporas promueven la germinación cuando las condiciones ambientales son favorables. Varias proteínas necesarias para el ensamblaje de la capa, la síntesis de la corteza y la germinación se conocen colectivamente como proteínas de la capa de esporas. Este proyecto tiene como objetivo determinar la diversidad y los procesos evolutivos de los genes de la capa de esporas en varias especies de Bacillales formadoras de esporas. Los métodos de BLASTp, Clustering y KEGG Orthology se han utilizado para determinar la existencia y diversidad de genes de la capa en ciento 141 genomas de especies formadoras de esporas. Además, las fuerzas de selección que actúan sobre los genes de la capa de esporas se han estimado utilizando los métodos Tajima’s D, dN / dS, MEME y BUSTED. -
Qualitative and Quantitative Assessment of the “Dangerous
Center for International and Security Studies at Maryland1 Qualitative and Quantitative Assessment of the “Dangerous Activities” Categories Jens H. Kuhn July 2005 CISSM School of Public Policy This paper was prepared as part of the Advanced Methods of Cooperative Security Program at the Center 4113 Van Munching Hall for International and Security Studies at Maryland, with generous support from the MacArthur Foundation University of Maryland and the Sloan Foundation. College Park, MD 20742 Tel: (301) 405-7601 [email protected] 2 QUALITATIVE AND QUANTITATIVE ASSESSMENT OF THE “DANGEROUS ACTIVITIES” CATEGORIES DEFINED BY THE CISSM CONTROLLING DANGEROUS PATHOGENS PROJECT WORKING PAPER (July 31, 2005) Jens H. Kuhn, MD, ScD (Med. Sci.), MS (Biochem.) Contact Address: New England Primate Research Center Department of Microbiology and Molecular Genetics Harvard Medical School 1 Pine Hill Drive Southborough, MA 01772-9102, USA Phone: (508) 786-3326 Fax: (508) 786-3317 Email: [email protected] 3 OBJECTIVE The Controlling Dangerous Pathogens Project of the Center for International Security Studies at Maryland (CISSM) outlines a prototype oversight system for ongoing microbiological research to control its possible misapplication. This so-called Biological Research Security System (BRSS) foresees the creation of regional, national, and international oversight bodies that review, approve, or reject those proposed microbiological research projects that would fit three BRSS-defined categories: Potentially Dangerous Activities (PDA), Moderately Dangerous Activities (MDA), and Extremely Dangerous Activities (EDA). It is the objective of this working paper to assess these categories qualitatively and quantitatively. To do so, published US research of the years 2000-present (early- to mid-2005) will be screened for science reports that would have fallen under the proposed oversight system had it existed already. -
Molecular Characterization and Identification of Bacillus Clausii
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 2001, p. 834–839 Vol. 67, No. 2 0099-2240/01/$04.00ϩ0 DOI: 10.1128/AEM.67.2.834–839.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Molecular Characterization and Identification of Bacillus clausii Strains Marketed for Use in Oral Bacteriotherapy SONIA SENESI,* FRANCESCO CELANDRONI, ARIANNA TAVANTI, AND EMILIA GHELARDI Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Universita`degli Studi di Pisa, Pisa, Italy Received 28 September 2000/Accepted 28 November 2000 A substantial number of Bacillus species have been marketed for use in oral bacteriotherapy because of their purported ability to prevent or treat various gastrointestinal disorders. Recently, some of the Bacillus strains Downloaded from in Enterogermina, which is made up of aqueous suspensions of viable Bacillus spores, have been partially characterized and aligned with members of the Bacillus alcalophilus subgroup rather than with Bacillus subtilis, as previously reported. With a view toward verifying the original taxonomic position of the Enterogermina strains, we catalogued both phenotypic and genotypic traits exhibited by the four Bacillus strains isolated from the spore mixtures found in original commercial preparations dated 1975 and 1984 and commercial prepa- rations now being propagated industrially. Analyses of physiological and biochemical traits, complete 16S rRNA gene sequences, DNA-DNA reassociation, tRNA intergenic spacer length polymorphism, single-strand conformation polymorphism of PCR-amplified spacer regions of tRNA genes, and randomly amplified poly- morphic DNA led to the finding that all of the Enterogermina strains belong to a unique genospecies, which is unequivocally identified as the alkalitolerant species Bacillus clausii.