microorganisms Article Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans Dolors Vaqué 1,*,† , Julia A. Boras 1,† , Jesús Maria Arrieta 2 , Susana Agustí 3 , Carlos M. Duarte 3 and Maria Montserrat Sala 1 1 Institut de Ciències del Mar-Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain;
[email protected] (J.A.B.);
[email protected] (M.M.S.) 2 Centro Oceanográfico de Canarias (Instituto Español de Oceanografía, IEO), Farola del Mar 22, Dársena Pesquera, 38180 Tenerife, Spain;
[email protected] 3 Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
[email protected] (S.A.);
[email protected] (C.M.D.) * Correspondence:
[email protected]; Tel.: +34-932309592 † Contributed equally to the elaboration of the study and manuscript. Abstract: The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed.