Dendritic Snares Add a New Twist to the Old Neuron Theory

Total Page:16

File Type:pdf, Size:1020Kb

Dendritic Snares Add a New Twist to the Old Neuron Theory PERSPECTIVE Dendritic SNAREs add a new twist to the old neuron theory Saak V. Ovsepian1 and J. Oliver Dolly1 International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland Edited by Thomas C. Südhof, Stanford University School of Medicine, Palo Alto, CA, and approved October 4, 2011 (received for review November 22, 2010) Dendritic exocytosis underpins a broad range of integrative and homeostatic synaptic functions. Emerging data highlight the essential role of SNAREs in trafficking and fusion of secretory organelles with release of peptides and neurotransmitters from dendrites. This Perspective analyzes recent evidence inferring axo-dendritic polarization of vesicular release machinery and pinpoints progress made with existing challenges in this rapidly progressing field of dendritic research. Interpreting the relation of new molecular data to physiological results on secretion from dendrites would greatly advance our understanding of this facet of neuronal mechanisms. dendritic release | neuronal polarization | retrograde transmission lassically, a single neuron exocytosis at dendrites in compliance with its central hydrophilic layer containing receives multimodal informa- the view of highly conserved fusion ma- three conserved glutamines (Q) and one C tion as local electro-chemical chinery among different secretory path- arginine (R) (18). Accordingly, the con- signals through synaptic inputs ways, new findings indicate their notable tributing molecules are grouped into Qa-, converging onto its soma and dendrites. specialization, supporting the premise of Qb-, Qc-, Qbc-, and R-SNAREs (19, 20) After integration, these confined events molecular asymmetry as one of the key (Fig. 1A). In neurons, SNAREs driving are translated into action potentials at the affiliates of neuronal polarization. secretion are represented by a vesicle- axon initial segment, which rapidly prop- associated membrane protein (VAMP, known also as synaptobrevin, R-SNARE), agate to nerve terminals and trigger there SNARE Hypothesis and Secretory plasma membrane anchored-attached syn- quantal release of neurotransmitters. Re- Vesicle Fusion at Synapses cent electrophysiological and imaging data, taxin (Qa-SNARE), and SNAP (compris- however, dispute this rather naïve view of Membrane fusion constitutes one of the ing two SNARE motifs, Qbc-SNARE) fundamental biological processes governing neurons, highlighting unforeseen traits variants (21). Advantageously for research, targeting and merging of intracellular and dynamics of dendritic integration and these proteins constitute natural targets for organelles. Analysis of its mechanisms led communication mechanisms between Clostridial neurotoxins (CNTs, both botu- to the discovery of SNAREs as highly nerve cells. It emerges that neurons, in linum and tetanus toxins), which recognize conserved key nanoengines of various addition to transferring signals through and proteolytically inactivate SNAREs intracellular trafficking steps (11, 12). canonical chemical synapses at the axon with astounding efficiency and specificity, According to the contemporary model of causing blockade of synaptic transmission terminals, also interact via mixed electro- membrane fusion, SNAREs, along with (22–24) (Fig. 1B). Unstructured in mono- chemical and electrical synapses at so- several regulatory proteins, which are lo- meric state, SNAREs when associated matic and dendritic juxtapositions, as well calized in opposing membranes, attach and form highly stable ternary helical com- as through diffuse nonsynaptic volume propel the merger of membranes, using the – fi plexes (syntaxin and VAMP contributing transmission signaling (1 4). Signi cant free energy that is released during the evidence has also accrued suggesting es- one, whereas SNAP-25 provides two formation of a four-helix SNARE bundle. α sential roles for dendritic exocytosis in Although not undisputed, during the last -helices) before vesicular release (13, 18). these and numerous other integrative and 2 decades this model attracted scientific This multireaction process, which was ex- homeostatic processes. These include re- scrutiny from numerous angles and gained plicitly demonstrated at both the ensemble lease of transmitters, neurotrophins, and overwhelming support from functional, and single molecular levels, is initiated modulatory peptides from dendrites, along molecular, and genetic studies (13–15). by the opening of syntaxin and binding of with activity-dependent remodeling of In eukaryotic cells, the SNARE protein Munc18 to the syntaxin Habc N-terminal synaptic connections via regulated ex- family is represented by nine subfamilies, domain (25, 26), a step that promotes pression of receptors and ion channels with a total of 36 members identified in loose and reversible interaction between – (5 7). Although a great body of data humans (16). Originally, a strict separation SNARE motifs of syntaxin with SNAP-25 advocate the involvement of SNAREs in was assumed between these proteins re- and VAMP, leading to anchoring of the trafficking and vesicular fusion at den- siding on the “donor” and “acceptor” synaptic vesicle at the release site (Fig. C drites, nonvesicular release of retrograde membrane compartments, which led to 1 ). Upon binding of complexin, another messengers (e.g., endocannabinoids, their classification as vesicle membrane cytosolic regulatory protein, the transient arachidonic acid, nitric oxide, and carbon SNARE core scaffold gets primed for or target membrane SNAREs (v- and 2+ monoxide) from this location with their t-SNAREs) (17). This categorization, rapid activation by the Ca sensor syn- autocrine and paracrine effects on target however, proved to be inept when homo- aptotagmin (27); the latter enforces the and precursor neurons has additionally typic fusion events were considered and dissociation of complexin from the been documented (8–10). This Perspective especially in cases in which certain SNARE complex and puts into effect the reviews and analyzes key research streams SNAREs function in several transport on SNARE-dependent retrosynaptic steps, with varying partners. The more re- signaling in mammalian central neurons cent and widely accepted classification is, Author contributions: S.V.O. and J.O.D. wrote the paper. and highlights the outstanding issues therefore, based on reactive motifs con- The authors declare no conflict of interest. and challenges in this rapidly progressing tributed by each partner toward the for- This article is a PNAS direct submission. fi fi topic. Despite the well-de ned signi - mation of ultrastable coiled-coil SNARE 1To whom correspondence may be addressed. E-mail: saak. cance of SNAREs for trafficking and complexes during membrane fusion, with [email protected] or [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1017235108 PNAS | November 29, 2011 | vol. 108 | no. 48 | 19113–19120 Downloaded by guest on September 24, 2021 A C SV docking N-terminal SNARE TM domains motif domain Munc18 ATP Complexin Qa-SNARE Releasable 2 Qb-SNARE vesicle SV priming Qc-SNARE Qbc-SNARE 1 3 R-SNARE SV fusion 2+ B Syntaxin 1A 4 Ca ATP SNAP, NSF Synaptobrevin 2 BoNT/C BoNT/A D BoNT/E Synaptobrevin 2 BoNT/F SNAP-25 Syntaxin 1A BoNT/D COOH Extracellular milieu TeNT or BoNT/B Secretory organelle BoNT/G SNAP-25 Fig. 1. SNAREs and vesicular secretion from neurons. (A) Types of SNAREs with their gross structures schematized. The C-terminal of SNAREs corresponds to the transmembrane (TM) domains; the central portion contains the SNARE motif, and the N-terminal of Qa-SNAREs (syntaxins in neurons) possesses antiparallel three-helix bundles. In Qbc SNAREs (SNAP-23 and SNAP-25 in neurons), duplicated SNARE motifs are connected by a linker that is frequently palmitoylated (zig- zag lines) and anchors the protein to the membrane. During vesicular fusion at nerve terminals Qbc SNAREs (SNAP-23/25 variants) contribute two α-helices to the four-helical core complex, with the other two provided by Qa (syntaxin) and R (VAMP) SNAREs. Dashed borders highlight domains that are missing in some subfamily members. Modified with permission from ref. 18. (B) SNAREs constitute molecular targets of Clostridial neurotoxins, which recognize and cleave these fusogenic proteins at specific scissile bonds. Neuronal SNAREs serve as substrate for the protease light chains of tetanus toxin and botulinum neurotoxins: arrows indicate the cleavage sites of individual SNAREs by the different neurotoxins (BoNT, A-G serotypes of botulinum neurotoxin; TeNT, tetanus toxin). Plasma and vesicle membranes are indicated in gray (Left and Right, respectively). (C) Schematic of the SNARE-dependent synaptic vesicle cycle. Conforma- tional shift from a closed to an open state of the N-terminal motif of syntaxin (Qa SNARE, red) conditioned by SM protein Munc18 initiates the loose in- teraction of syntaxin with SNAP-25 (Qbc SNARE, green) and VAMP (R-SNARE, blue), leading to ATP-dependent docking of SVs at the active zone (1, 2). This complex gets primed by complexin and Munc18 for activation by synaptotagmin and Ca2+ (3). Upon Ca2+ influx, synaptotagmin dissociates the complexin from the fusion complex and reacts with membrane phospholipids and the SNAREs, driving membrane fusion (4) and release of vesicular contents into the synaptic cleft. This step is followed by dissociation of the SNARE complex by NSF using the hydrolysis of ATP as energy source, liberating SNAREs for further reuse. (D)A crystal structure of SNARE core complex with four parallel α-helices associated
Recommended publications
  • Nervous Tissue
    Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria,
    [Show full text]
  • Pre-Oligodendrocytes from Adult Human CNS
    The Journal of Neuroscience, April 1992, 12(4): 1538-l 547 Pre-Oligodendrocytes from Adult Human CNS Regina C. Armstrong,lJ Henry H. Dorn, l,b Conrad V. Kufta,* Emily Friedman,3 and Monique E. Dubois-Dalcq’ ‘Laboratory of Viral and Molecular Pathogenesis, and %urgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892 and 3Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3246 CNS remyelination and functional recovery often occur after Rapid and efficient neurotransmission is dependent upon the experimental demyelination in adult rodents. This has been electrical insulating capacity of the myelin sheath around axons attributed to the ability of mature oligodendrocytes and/or (reviewed in Ritchie, 1984a,b). Nerve conduction is impaired their precursor cells to divide and regenerate in response after loss of the myelin sheath and results in severe neurological to signals in demyelinating lesions. To determine whether dysfunction in human demyelinating diseases such as multiple oligodendrocyte precursor cells exist in the adult human sclerosis (MS). Remyelination can occur in the CNS of MS CNS, we have cultured white matter from patients under- patients but appears to be limited (Perier and Gregoire, 1965; going partial temporal lobe resection for intractable epilep- Prineas et al., 1984). Studies of acute MS cases have revealed sy. These cultures contained a population of process-bear- that recent demyelinating lesions can exhibit remyelination that ing cells that expressed antigens recognized by the 04 appears to correlate with the generation of new oligodendrocytes monoclonal antibody, but these cells did not express galac- (Prineas et al., 1984; Raine et al., 1988).
    [Show full text]
  • Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury Rachel E
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury Rachel E. Bennett Washington University School of Medicine David L. Brody Washington University School of Medicine Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Bennett, Rachel E. and Brody, David L., ,"Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury." Journal of Neurotrauma.31,9. 1647-1663. (2014). https://digitalcommons.wustl.edu/open_access_pubs/4711 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. JOURNAL OF NEUROTRAUMA 31:1647–1663 (October 1, 2014) ª Mary Ann Liebert, Inc. DOI: 10.1089/neu.2013.3320 Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury Rachel E. Bennett and David L. Brody Abstract The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. The main inflammatory cells in the brain are microglia, a type of macrophage. This research sought to determine the contribution of microglia to axon degeneration after repetitive closed-skull traumatic brain injury (rcTBI) using CD11b-TK (thymidine kinase) mice, a valganciclovir-inducible model of macrophage depletion.
    [Show full text]
  • Identification of Caveolin and Caveolin-Related Proteins in the Brain
    The Journal of Neuroscience, December 15, 1997, 17(24):9520–9535 Identification of Caveolin and Caveolin-Related Proteins in the Brain Patricia L. Cameron, Johnna W. Ruffin, Roni Bollag, Howard Rasmussen, and Richard S. Cameron Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912-3175 Caveolae are 50–100 nm, nonclathrin-coated, flask-shaped brane. Immunoblot analyses demonstrate that detergent- plasma membrane microdomains that have been identified in insoluble complexes isolated from astrocytes are composed of most mammalian cell types, except lymphocytes and neurons. caveolin-1a, an identification verified by Northern blot analyses To date, multiple functions have been ascribed to caveolae, and by the cloning of a cDNA using reverse transcriptase-PCR including the compartmentalization of lipid and protein compo- amplification from total astrocyte RNA. Using a full-length nents that function in transmembrane signaling events, biosyn- caveolin-1 probe, Northern blot analyses suggest that the ex- thetic transport functions, endocytosis, potocytosis, and trans- pression of caveolin-1 may be regulated during brain develop- cytosis. Caveolin, a 21–24 kDa integral membrane protein, is ment. Immunoblot analyses of detergent-insoluble complexes the principal structural component of caveolae. We have initi- isolated from cerebral cortex and cerebellum identify two im- ated studies to examine the relationship of detergent-insoluble munoreactive polypeptides with apparent molecular weight and complexes identified
    [Show full text]
  • Was Not Reached, However, Even After Six to Sevenhours. A
    PROTEIN SYNTHESIS IN THE ISOLATED GIANT AXON OF THE SQUID* BY A. GIUDITTA,t W.-D. DETTBARN,t AND MIROSLAv BRZIN§ MARINE BIOLOGICAL LABORATORY, WOODS HOLE, MASSACHUSETTS Communicated by David Nachmansohn, February 2, 1968 The work of Weiss and his associates,1-3 and more recently of a number of other investigators,4- has established the occurrence of a flux of materials from the soma of neurons toward the peripheral regions of the axon. It has been postulated that this mechanism would account for the origin of most of the axonal protein, although the time required to cover the distance which separates some axonal tips from their cell bodies would impose severe delays.4 On the other hand, a number of observations7-9 have indicated the occurrence of local mechanisms of synthesis in peripheral axons, as suggested by the kinetics of appearance of individual proteins after axonal transection. In this paper we report the incorporation of radioactive amino acids into the protein fraction of the axoplasm and of the axonal envelope obtained from giant axons of the squid. These axons are isolated essentially free from small fibers and connective tissue, and pure samples of axoplasm may be obtained by extru- sion of the axon. Incorporation of amino acids into axonal protein has recently been reported using systems from mammals'0 and fish."I Materials and Methods.-Giant axons of Loligo pealii were dissected and freed from small fibers: they were tied at both ends. Incubations were carried out at 18-20° in sea water previously filtered through Millipore which contained 5 mM Tris pH 7.8 and 10 Muc/ml of a mixture of 15 C'4-labeled amino acids (New England Nuclear Co., Boston, Mass.).
    [Show full text]
  • Internalization of Lectins in Neuronal Gerl
    INTERNALIZATION OF LECTINS IN NEURONAL GERL NICHOLAS K. GONATAS, SEUNG U. KIM, ANNA STIEBER, and STRATIS AVRAMEAS From the Division of Neuropathology, Department of Pathology, University of PennsylvaniaSchool of Medicine, Philadelphia, Pennsylvania 19174, and the Laboratory of Immunocytochemistry,Pasteur Institute, Paris, France ABSTRACT Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxi- dase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4~ and internalization was performed at 37~ in a culture medium free of lectin-HRP. 15-30 rain after incubation at 37~ lectin-HRP-receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37~ lectin-HRP- receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37~ Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37~ Internalization of lectin-HRP-receptor conjugates was decreased or in- hibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin-labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL. Considerable information concerning the mobility tors" for ricin (Ric) and phytohemagglutinin and distribution of plasma membrane proteins has (PHA) labeled with horseradish peroxidase been gained with the use of various ligands.
    [Show full text]
  • (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions During Myelination
    The Journal of Neuroscience, November 15, 2000, 20(22):8354–8364 Contactin-Associated Protein (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions during Myelination Jose C. Rios,1 Carmen V. Melendez-Vasquez,1 Steven Einheber,1 Marc Lustig,2 Martin Grumet,2 John Hemperly,5 Elior Peles,6 and James L. Salzer1,3,4 Departments of 1Cell Biology, 2Pharmacology, 3Neurology, and the 4Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, 5BD Technologies, Research Triangle Park, North Carolina 27709, and 6Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel Specialized paranodal junctions form between the axon and the associated specifically with Caspr in the paranodes, whereas a closely apposed paranodal loops of myelinating glia. They are higher-molecular-weight form of contactin, not associated with interposed between sodium channels at the nodes of Ranvier Caspr, is present in central nodes of Ranvier. These results and potassium channels in the juxtaparanodal regions; their suggest that the targeting of contactin to different axonal do- precise function and molecular composition have been elusive. mains may be determined, in part, via its association with Caspr. We previously reported that Caspr (contactin-associated protein) Treatment of myelinating cocultures of Schwann cells and neu- is a major axonal constituent of these junctions (Einheber et al., rons with RPTP␤–Fc, a soluble construct containing the carbonic 1997). We now report that contactin colocalizes and forms a cis anhydrase domain of the receptor protein tyrosine phosphatase complex with Caspr in the paranodes and juxtamesaxon.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • Endocytosis of Viruses and Bacteria
    Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Endocytosis of Viruses and Bacteria Pascale Cossart1 and Ari Helenius2 1Institut Pasteur, Unite´ des Interactions Bacte´ries-Cellules, Paris F-75015, France; INSERM U604, Paris F-75015, France; and INRA, USC2020, Paris F-75015, France 2Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland Correspondence: [email protected]; [email protected] Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens. any of the most widespread and devastat- valuable insights into fundamental aspects of Ming diseases in humans and livestock are cell biology. caused by viruses and bacteria that enter cells for Here, we focus on the mechanisms by which replication. Being obligate intracellular para- viral and bacterial pathogens exploit the endo- sites, viruses have no choice. They must trans- cytosis machinery for host cell entry and rep- port their genome to the cytosol or nucleus of lication. Among recent reviews on this topic, infected cells to multiply and generate progeny. dedicated uniquely to either mammalian vi- Bacteria and eukaryotic parasites do have other ruses or bacterial pathogens, we recommend options; most of them can replicate on their the following: Cossart and Sansonetti (2004); own.
    [Show full text]
  • Chapter 22 – Neuromuscular Physiology and Pharmacology J. A. Jeevendra Martyn
    Chapter 22 – Neuromuscular Physiology and Pharmacology J. A. Jeevendra Martyn The physiology of neuromuscular transmission could be analyzed and understood at the most simple level by using the classic model of nerve signaling to muscle through the acetylcholine receptor. The mammalian neuromuscular junction is the prototypical and most extensively studied synapse. Research has provided more detailed information on the processes that, within the classic scheme, can modify neurotransmission and response to drugs. One example of this is the role of qualitative or quantitative changes in acetylcholine receptors modifying neurotransmission and response to drugs.[1][2] In myasthenia gravis, for example, the decrease in acetylcholine receptors results in decreased efficiency of neurotransmission (and therefore muscle weakness)[3] and altered sensitivity to neuromuscular relaxants.[1][2] Another example is the importance of nerve-related (prejunctional) changes that alter neurotransmission and response to drugs.[1][4] At still another level is the evidence that muscle relaxants act in ways that are not encompassed by the classic scheme of unitary site of action. The observation that muscle relaxants can have prejunctional effects[5] or that some nondepolarizers can also have agonist-like stimulatory actions on the receptor[6] while others have effects not explainable by purely postsynaptic events[7] has provided new insights into some previously unexplained observations. Although this multifaceted action-response scheme makes the physiology and
    [Show full text]
  • Neuromuscular Junctions in the Body Wall Muscles of the Earthworm, Lumbricus Terrestris Linn
    J. Cell Set, 7, 263-271 (1970) 263 Printed in Great Britain NEUROMUSCULAR JUNCTIONS IN THE BODY WALL MUSCLES OF THE EARTHWORM, LUMBRICUS TERRESTRIS LINN. P. J. MILL AND M. F. KNAPP Department of Zoology, University of Leeds, England SUMMARY The fine structure of the neuromuscular junctions in the body wall muscles of the earthworm 13 described. The segmental nerves send branches into the muscle layers. Axons in the nerve branches contain numerous synaptic vesicles and contact is established between these axons and muscle fibres or muscle tails; the latter may extend for a considerable distance from the muscle fibre. The cleft between the axolemma and sarcolemma is 85-120 nm wide and con- tains basement membrane material. At intervals small aggregations of electron-dense material are attached to the axonal membrane and synaptic vesicles are associated with these. The sarcolemma bears rather larger masses of dense material and is also specialized extracellularly. INTRODUCTION The earthworm's body wall muscles are innervated by the segmental nerves. There are about 300 motor fibres in the segmental nerves of a typical segment of the earth- worm Pherettma communissima (Ogawa, 1939); these innervate at least 120000 muscle fibres. The axons give off many branches to the muscles and their endings are den- dritic in form in fully grown worms but bud-like in young worms. According to Retzius (1892 a), finely branching motor fibres ramify in the muscles of Lumbricus, terminating as free endings which are like knotted threads in appearance. His figures indicate both multiterminal and polyneuronal innervation. Smallwood (1926) in an investigation of Lumbricus terrestris, noted that in addition to fine branching nerve fibres with knob-like endings, which he considered to be sensory, there is another type of ending characterized by a cluster of branches, but also with knob-like terminals; he thought that these were motor in function.
    [Show full text]
  • Glial M6B Stabilizes the Axonal Membrane at Peripheral Nodes of Ranvier
    Received: 9 August 2017 | Revised: 6 December 2017 | Accepted: 11 December 2017 DOI: 10.1002/glia.23285 RESEARCH ARTICLE Glial M6B stabilizes the axonal membrane at peripheral nodes of Ranvier Marie L Bang1 | Anya Vainshtein1 | Hyun-Jeong Yang1 | Yael Eshed-Eisenbach1 | Jerome Devaux2 | Hauke B Werner3 | Elior Peles1 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Abstract Israel Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination 2Aix-Marseille University, CNRS, CRN2M- in the central nervous system, but their role in the peripheral nervous system is less clear. Here we UMR 7286, Marseille, France report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal 3 Department of Neurogenetics, Max Planck axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell Institute of Experimental Medicine, microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of Goettingen, Germany myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already Correspondence present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, Elior Peles, Department of Molecular Cell in contrast to gliomedin, which accumulates at heminodes with or prior to Na1 channels, we often Biology, Weizmann Institute of Science, detected Na1 channel clusters at heminodes without any associated M6B, indicating that it is not Rehovot, 76100, Israel. E-mail: [email protected] required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and bIV spectrin), and microvilli com- Funding information ponents (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of NIH, Grant Number: R01NS097428; Israel Science Foundation; Dr.
    [Show full text]