Z4 Und Ermeth

Total Page:16

File Type:pdf, Size:1020Kb

Z4 Und Ermeth Z4 UND ERMETH: MASCHINEN IM DIENSTE DES Z4 ET ERMETH: DES MACHINES AU SERVICE WISSENSCHAFTLICHEN RECHNENS DU CALCUL SCIENTIFIQUE Ayant déjà abordé des calculs complexes en tant qu’officier durant la Seconde Guerre mondiale, Beatrice Tobler Eduard Stiefel avait compris que ce domaine recelait un immense potentiel pour la Suisse. Il Interview avec Ambros Speiser et Carl décida alors de construire un calculateur en col- August Zehnder laboration avec son assistant, le mathématicien Ambros Speiser (*1922), après des études Heinz Rutishauser (1918–1970), et l’électroin- d’électrotechnique, obtient son doctorat en 1950 génieur Ambros Speiser. En 1948, afin de se auprès du professeur Eduard Stiefel, à l’Ecole rendre compte de l’état des recherches, tous les polytechnique fédérale de Zurich (EPFZ). trois effectuèrent un long voyage d’études aux Chargé de cours en 1952, il est nommé profes- Etats-Unis. Ambros Speiser et Heinz Rustis- seur en 1962. En 1955, il quitte l’EPFZ pour hauser passèrent d’abord quelques mois à prendre la direction du laboratoire de recherches l’Université de Harvard à Boston, où Howard IBM à Rüschlikon. Plus tard, il dirige le centre Aiken (tableau chronologique, 1944) travaillait de recherches chez Brown Boveri à Baden, tout sur la série des Mark, puis à l’Institute for en continuant à enseigner à l’EPFZ. De 1987 à Advanced Study à Princeton, où travaillait John 1993, il préside l’Académie suisse des sciences von Neumann (tableau chronologique, 1945).1 1 Gutknecht, 1987, p. 1–4 techniques. Ambros Speiser a en synthèse vécu Dès son retour, Eduard Stiefel prit conscience et marqué de son empreinte les débuts de l’in- que la construction d’une machine allait durer formatique suisse. des années. Apprenant que le calculateur à relais Z4 de Konrad Zuse avait passé la guerre sans Carl August Zehnder (*1937) a fait des études encombre, il se tourna vers une solution inter- de mathématiques à l’Ecole polytechnique fédé- médiaire: contre un montant de 30’000 francs rale de Zurich où il passe son doctorat en 1965. suisses, il loua le Z4 pour une durée de cinq ans. Depuis 1973 il est professeur d’informatique à La machine, équipée de 2’200 relais provenant l’EPFZ où il créa, entre autres, le domaine de d’anciennes installations de télécommunication, recherches des banques de données. Etudiant, il avait été construite entre 1942 et 1945. Une a appris la programmation sur la machine multiplication durait trois secondes, une divi- Beatrice Tobler Carl August Zehnder (geb. 1937) studierte an ERMETH. sion six. De vieilles bobines de films servaient der ETH Zürich Mathematik, doktorierte 1965 de ruban perforé pour les programmes.2 2 Gutknecht, 1987, p. 6 Interview mit Ambros Speiser und und ist seit 1973 Professor für Informatik an der L’histoire de l’informatique suisse commence En 1945, peu avant la chute de Berlin, Konrad Carl August Zehnder ETH Zürich, wo er u.a. das Forschungsgebiet en janvier 1948 avec la création de l’Institut de Zuse et sa famille réussirent, au cours d’une Ambros Speiser (geb. 1922) studierte Elektro- Datenbanken aufbaute. Er lernte 1958 als mathématiques appliquées à l’EPFZ. Le but de action de sauvetage spectaculaire, à transporter technik und doktorierte 1950 an der ETH Zürich Student das Programmieren auf der ERMETH. son directeur, le mathématicien zurichois la machine à Hopferau, au sud de l’Allemagne. bei Eduard Stiefel, wurde 1952 Privatdozent Die Computergeschichte der Schweiz beginnt Eduard Stiefel (1909–78), est d’introduire le Cependant, même après la guerre, personne ne und 1962 Professor. 1955 verliess er die ETH im Januar 1948 mit der Gründung des Instituts calcul contrôlé par programme en Suisse. A la marqua un véritable intérêt pour le Z4 en und wurde Direktor des IBM Forschungslabors für angewandte Mathematik an der ETH Zürich. même époque, quelques ordinateurs en état de Allemagne. Eduard Stiefel, en revanche, s’inté- in Rüschlikon, später Chef der Konzern- Sein Vorsteher, der Zürcher Mathematiker marche existaient déjà ailleurs, tels Colossus en ressait aux anciennes technologies: forschung bei Brown Boveri in Baden, hielt Eduard Stiefel (1909–1978), hatte es sich zum Angleterre, Mark I et l’ENIAC aux Etats-Unis, jedoch weiterhin Vorlesungen an der ETH. Von Ziel gesetzt, das programmgesteuerte Rechnen ainsi que le Z4 de Konrad Zuse en Allemagne. A. Speiser: «Nous étions tous conscients que les 1987 bis 1993 war er Präsident der Schweiz- in der Schweiz einzuführen. Zu dieser Zeit exis- Ce dernier allait plus particulièrement marquer calculateurs à relais appartenaient à une techno- erischen Akademie für Technische Wissen- tierten andernorts bereits einige funktionsfähige l’histoire de l’institut récemment créé de logie dépassée. Le Z4 devait permettre au pro- schaften (SATW). Ambros Speiser hat die Früh- Computer, unter ihnen Colossus in England, l’EPFZ. fesseur Stiefel d’effectuer des calculs scientifi- zeit der Schweizer Informatik miterlebt und mit- ques le plus rapidement possible, ce dont la machine s’acquitta avec succès. geprägt. fabriqué jusqu’en 1870. Sciences de Paris. Il sera l’arithmomètre à l’Académie des Charles Xavier Thomas présente produziert wird. Arithmometer vor, das bis 1870 Arithmometer vor, Académie des Sciences sein Paris der französischen Charles Xavier Thomas führt in 1820 tisser. pour le pilotage d’un métier à employer des cartes perforées (1752–1834) est le premier à Joseph-Marie Jacquard Webstuhls ein. Webstuhls Lochkarten zur Steuerung eines (1752–1834) setzt erstmals Joseph-Marie Jacquard 1801 binaire. invente le système arithmétique Gottfried Wilhelm Leibniz et das duale Zahlensystem. Gottfried Wilhelm Leibniz erfind- 1679 à Londres. Leibniz» à la Royal Society dispositif appelé «la Roue de machine à calculer dotée d’un (1646–1716) présente sa Gottfried Wilhelm Leibniz Staffelwalze vor. nische Rechenmaschine mit Society in London seine mecha- (1646–1716) führt vor der Royal Gottfried Wilhelm Leibniz 1673 (Pascaline) à Paris. présente sa machine à calculer Blaise Pascal (1623–1662) Rechenmaschine (Pascaline) vor. in Paris seine mechanische Blaise Pascal (1623–1666) führt 1643 document. mécanique mentionnée dans un invente la première calculatrice Wilhelm Schickard (1592–1635) Rechenmaschine. erwähnte mechanische erfindet die erste urkundlich Wilhelm Schikard (1592–1635) 1623 Mark I und ENIAC in den USA und Konrad calculs de statistique. D’autres utilisateurs pro- Zuses Z4 in Deutschland. Letzterer sollte die venaient de l’industrie aéronautique et des ent- Geschichte des frisch gegründeten Instituts an A. Speiser: «Wir wussten alle, dass Relaisma- Voyant les performances du Z4 en Suisse, les reprises d’optique. L’utilisation du Z4 était fac- der ETH prägen. schinen eine veraltete Technologie darstellten. Allemands commencèrent à réagir en se deman- turée un centime par opération ou dix francs Professor Stiefel hat die Z4 erworben, um mög- dant pourquoi ils avaient laissé partir la machi- suisses de l’heure aux personnes extérieures au Stiefel hatte sich als Offizier während des lichst schnell wissenschaftliche Berechnungen ne en Suisse, au lieu de la garder en projet. Zweiten Weltkriegs schon mit komplexen machen zu können. Dafür wurde sie mit gros- Allemagne.» Les étudiants de divers instituts profitèrent évi- Berechnungen auseinandergesetzt und das sem Erfolg eingesetzt. demment aussi de la machine pour leurs travaux Potential für die Schweiz auf diesem Gebiet A Zurich, les capacités de calcul du Z4 et leurs thèses. La plupart du temps cependant la erkannt. Er beschloss, zusammen mit seinen Erst als man sah, wie erfolgreich die Z4 in der étaient aussi mises à disposition de tiers : machine était utilisée pour le calcul scientifique Assistenten, dem Mathematiker Heinz Rutis- Schweiz eingesetzt wurde, wachten die Deut- A. Speiser: «Recherches et prestations de ser- d’Eduard Stiefel et de Heinz Rutishauser avec hauser (1918-1970) und dem Elektroingenieur schen auf und fragten sich, wieso sie die vice se développaient en parallèle, occupant un succès qui rendit l’institut célèbre dans le Ambros Speiser, eine eigene Rechenmaschine Maschine hatten in die Schweiz gehen lassen, chacune environ 50% du temps de calcul. monde entier en quelques années. Le Z4 en était zu bauen. Um sich über den aktuellen Forsch- statt sie in Deutschland zu behalten.» La majorité des utilisateurs externes étaient des la base.» ungsstand zu informieren, unternahmen die drei ingénieurs du génie civil qui venaient faire des 1948 eine ausgedehnte Forschungsreise in die USA. Speiser und Rutishauser verbrachten eini- ge Monate an der Harvard University in Boston, wo Howard Aiken (Timeline 1944) an der Mark-Serie arbeitet und am Institute for Advanced Study in Princeton, wo John von 1 Gutknecht 1987, S.1-4 Neumann (Timeline 1945) tätig war.1 Nach ihrer Rückkehr wurde Stiefel bald klar, dass das Bauen einer eigenen Maschine Jahre dauern würde. Als er erfuhr, dass Konrad Zuses Relaisrechner Z4 den Krieg unbeschadet über- standen hatte, entschied er sich für eine Über- gangslösung: Er mietete die Z4 für fünf Jahre zu einem Preis von 30’000 Franken. Die Maschine wurde zwischen 1942 und 1945 gebaut und war mit 2200 Relais ausgestattet, die von alten Fernmeldeanlagen stammten. Eine Multiplika- tion dauerte drei, eine Division sechs Sekunden. Das Programm wurde in alte Filmrollen ge- 2 Gutknecht 1987, S. 6 stanzt, die als Lochstreifen dienten.2 1945 konn- te die Maschine kurz vor dem Fall Berlins in einer abenteuerlichen Rettungsaktion von Zuse und seiner Familie ins süddeutsche Hopferau gebracht werden. Auch nach dem Krieg interes- sierte sich in Deutschland niemand für die Z4. Stiefel hingegen ging es nicht darum, die neues- te Technologie zu haben: Die Rechenleistung der Z4 wurde in Zürich auch Dritten zur Verfügung gestellt: A. Speiser: «Forschung und Dienstleistung lie- die Automation in der Verwaltung und im L’équipe était tout à fait consciente de son fen parallel nebeneinander und beanspruchten je Bürobereich bei ganz bestimmten Routine- rôle de pionnier: etwa 50% der Rechenzeit. Die auswärtigen sachen etabliert, z.B.
Recommended publications
  • Milestones in Analog and Digital Computing
    Milestones in Analog and Digital Computing Contributions to the History of Mathematics and Information Technology by Herbert Bruderer Numerous recent discoveries of rare historical analog and digital calculators and previously unknown texts, drawings, and pictures from Germany, Austria, Switzerland, Liechtenstein, and France. Worldwide, multilingual bibliography regarding the history of computer science with over 3000 entries. 12 step-by-step set of instructions for the operation of historical analog and digital calculating devices. 75 comparative overviews in tabular form. 200 illustrations. 20 comprehensive lists. 7 timelines of computer history. Published by de Gruyter Oldenbourg. Berlin/Boston 2015, xxxii, 820 pages, 119.95 Euro. During the 1970's mechanical calculating instruments and machines suddenly disappeared from the scene. They were replaced by electronic versions. Most of these devices developed since the 17th century – often very clever constructions – have been forgotten. Who can imagine today how difficult calculation was only a few decades ago? This book introduces the reader to selected milestones from prehistory and early history of computing. The Antikythera Mechanism This puzzling device was made around 200 BC. It was discovered around 1900 by divers off the Greek island of Antikythera. It is believed to be the oldest known analog (or rather hybrid) computing device. Numerous replicas have been built to unravel the mysteries of this calendar calculator. It is suspected that the machine came from the school of Archimedes. 1 Androids, Music Boxes, Chess Automatons, Looms This treatise also explores topics related to computing technology: automated human and animal figures, mecha- nized musical instruments, music boxes, as well as punched tape controlled looms and typewriters.
    [Show full text]
  • Die Gruncllehren Cler Mathematischen Wissenschaften
    Die Gruncllehren cler mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Beriicksichtigung der Anwendungsgebiete Band 135 Herausgegeben von J. L. Doob . E. Heinz· F. Hirzebruch . E. Hopf . H. Hopf W. Maak . S. Mac Lane • W. Magnus. D. Mumford M. M. Postnikov . F. K. Schmidt· D. S. Scott· K. Stein Geschiiftsfiihrende Herausgeber B. Eckmann und B. L. van der Waerden Handbook for Automatic Computation Edited by F. L. Bauer· A. S. Householder· F. W. J. Olver H. Rutishauser . K. Samelson· E. Stiefel Volume I . Part a Heinz Rutishauser Description of ALGOL 60 Springer-Verlag New York Inc. 1967 Prof. Dr. H. Rutishauser Eidgenossische Technische Hochschule Zurich Geschaftsfuhrende Herausgeber: Prof. Dr. B. Eckmann Eidgenossische Tecbnische Hocbscbule Zurich Prof. Dr. B. L. van der Waerden Matbematisches Institut der Universitat ZUrich Aile Rechte, insbesondere das der Obersetzung in fremde Spracben, vorbebalten Ohne ausdriickliche Genehmigung des Verlages ist es auch nicht gestattet, dieses Buch oder Teile daraus auf photomechaniscbem Wege (Photokopie, Mikrokopie) oder auf andere Art zu vervielfaltigen ISBN-13: 978-3-642-86936-5 e-ISBN-13: 978-3-642-86934-1 DOl: 10.1007/978-3-642-86934-1 © by Springer-Verlag Berlin· Heidelberg 1967 Softcover reprint of the hardcover 1st edition 1%7 Library of Congress Catalog Card Number 67-13537 Titel-Nr. 5l1B Preface Automatic computing has undergone drastic changes since the pioneering days of the early Fifties, one of the most obvious being that today the majority of computer programs are no longer written in machine code but in some programming language like FORTRAN or ALGOL. However, as desirable as the time-saving achieved in this way may be, still a high proportion of the preparatory work must be attributed to activities such as error estimates, stability investigations and the like, and for these no programming aid whatsoever can be of help.
    [Show full text]
  • Oral History Interview with David J. Wheeler
    An Interview with DAVID J. WHEELER OH 132 Conducted by William Aspray on 14 May 1987 Princeton, NJ Charles Babbage Institute The Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 David J. Wheeler Interview 14 May 1987 Abstract Wheeler, who was a research student at the University Mathematical Laboratory at Cambridge from 1948-51, begins with a discussion of the EDSAC project during his tenure. He compares the research orientation and the programming methods at Cambridge with those at the Institute for Advanced Study. He points out that, while the Cambridge group was motivated to process many smaller projects from the larger university community, the Institute was involved with a smaller number of larger projects. Wheeler mentions some of the projects that were run on the EDSAC, the user-oriented programming methods that developed at the laboratory, and the influence of the EDSAC model on the ILLIAC, the ORDVAC, and the IBM 701. He also discusses the weekly meetings held in conjunction with the National Physical Laboratory, the University of Birmingham, and the Telecommunications Research Establishment. These were attended by visitors from other British institutions as well as from the continent and the United States. Wheeler notes visits by Douglas Hartree (of Cavendish Laboratory), Nelson Blackman (of ONR), Peter Naur, Aad van Wijngarden, Arthur van der Poel, Friedrich L. Bauer, and Louis Couffignal. In the final part of the interview Wheeler discusses his visit to Illinois where he worked on the ILLIAC and taught from September 1951 to September 1953. 2 DAVID J.
    [Show full text]
  • The Education Column
    The Education Column by Juraj Hromkovicˇ Department of Computer Science ETH Zürich Universitätstrasse 6, 8092 Zürich, Switzerland [email protected] Informatics –New Basic Subject Walter Gander Department of Computer Science ETH Zürich [email protected] Abstract Informatics, as Computer Science is called in Europe, has become a leading science. It is high time that it be adopted as a basic subject in schools like mathematics or physics. We discuss in this article some recent develop- ments in Europe concerning informatics in schools. 1 Computers have been invented for computing! The first computers were calculating machines designed to solve engineering problems faster and with fewer errors. Consider for instance two typical repre- sentatives of computer pioneers: 1. Howard Aiken (1900-1973), a physicist, who encountered a system of dif- ferential equations during his PhD studies in 1939 which could not be solved analytically. He therefore needed to compute a numerical approximation, a tedious work by hand calculations. He envisioned an electro-mechanical computing device that could do much of the tedious work for him. This computer was originally called the ASCC (Automatic Sequence Controlled Calculator) and later renamed Harvard Mark I. With engineering, construction, and funding from IBM, the machine was completed and installed at Harvard in February, 1944.1 2. Konrad Zuse (1910-1995), civil engineer, had to solve linear equations for static calculations. This tedious calculations motivated him to think about constructing a machine to do this work. Unlike Aiken he did not look for a sponsor but installed 1936 a workshop for constructing a computer in the living room of his parents! [8] 1http://en.wikipedia.org/wiki/Howard_H._Aiken His greatest achievement was the world’s first programmable computer; the functional program-controlled Turing-complete Z3 became operational in May 1941.
    [Show full text]
  • A Conversation with Peter Huber 3
    Statistical Science 2008, Vol. 23, No. 1, 120–135 DOI: 10.1214/07-STS251 c Institute of Mathematical Statistics, 2008 A Conversation with Peter Huber Andreas Buja and Hans R. K¨unsch Abstract. Peter J. Huber was born on March 25, 1934, in Wohlen, a small town in the Swiss countryside. He obtained a diploma in math- ematics in 1958 and a Ph.D. in mathematics in 1961, both from ETH Zurich. His thesis was in pure mathematics, but he then decided to go into statistics. He spent 1961–1963 as a postdoc at the statistics depart- ment in Berkeley where he wrote his first and most famous paper on robust statistics, “Robust Estimation of a Location Parameter.” After a position as a visiting professor at Cornell University, he became a full professor at ETH Zurich. He worked at ETH until 1978, interspersed by visiting positions at Cornell, Yale, Princeton and Harvard. After leav- ing ETH, he held professor positions at Harvard University 1978–1988, at MIT 1988–1992, and finally at the University of Bayreuth from 1992 until his retirement in 1999. He now lives in Klosters, a village in the Grisons in the Swiss Alps. Peter Huber has published four books and over 70 papers on statis- tics and data analysis. In addition, he has written more than a dozen papers and two books on Babylonian mathematics, astronomy and his- tory. In 1972, he delivered the Wald lectures. He is a fellow of the IMS, of the American Association for the Advancement of Science, and of the American Academy of Arts and Sciences.
    [Show full text]
  • Konrad Zuse Und Die Eth Zürich }
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library HAUPTBEITRAG / KONRAD ZUSE UND DIE ETH ZÜRICH } Konrad Zuse und die ETH Zürich Zum 100. Geburtstag des Informatikpioniers Konrad Zuse (22. Juni 2010) Herbert Bruderer1 Die Geschichte der Informatik beginnt mit dem seit IAS-Rechner, IBM 701, Univac u. a. und in Grossbri- dem Altertum benutzten Zählrahmen Abakus und tannien: z. B. ACE, Colossus, EDSAC, Ferranti Mark, der Entstehung der Zahlensysteme. Die heutigen Leo und SSEM. Zuses Pionierleistungen in der Re- Computer haben zahlreiche Vorläufer. Die ersten chentechnik und in der Informatik wurden sowohl funktionsfähigen programmierbaren Rechengeräte in Europa als auch in den USA lange Zeit verkannt. wurden jedoch erst gegen Mitte des 20. Jahrhun- Das deutsche Patentamt verweigerte ein Patent für derts vorgestellt. Der deutsche Bauingenieur Konrad die Z3. Zuse (22.6.1910–18.12.1995) ist einer der Väter dieser Universalmaschinen. Er baute in Berlin seit 1936 ETH Zürich mietet den legendären Rechenanlagen. Nur ein einziges Gerät, die 1945 fer- Relaisrechner Z4 tiggestellte Z4, überlebte den zweiten Weltkrieg. Der Mathematiker Eduard Stiefel (1909–1978) Zuse versuchte anschliessend erfolglos, in- und gründete Anfang Januar 1948 an der ETH Zürich ausländische Universitäten sowie Hersteller von Bü- das Institut für angewandte Mathematik. Daraus romaschinen für seine Entwicklungen zu gewinnen. entwickelte sich 1968 die Fachgruppe für Computer- Damals konnte sich offenbar niemand vorstellen, wissenschaften, und schliesslich entstand daraus dass ein programmgesteuertes Rechengerät einer das heutige Departement Informatik. Damit be- handelsüblichen Rechenmaschine überlegen war. ginnt die Geschichte der Informatik in der Schweiz.
    [Show full text]
  • Peter Landin Semantics Seminar 2020 Algol 60 @ 60
    Peter Landin Semantics Seminar 2020 Algol 60 @ 60 Tim Denvir Troy Astarte 1 Introduction: Rationale ⚫ Algol 60 is 60 years old. ⚫ Algol 60 was defined with semantics in mind. ⚫ Peter Landin’s formal semantics of Algol 60. ⚫ An example of burgeoning new interest in formal semantics of programming languages in 60-70s ⚫ So: an apposite topic for PL Semantics Seminar. 2 Content of seminar ⚫ Short history of Algol 60. ⚫ The authors of the Revised Report. ⚫ Relationship of Algol with formal ideas, λ-calculus. ⚫ Peter Landin’s approach to formal description. ⚫ Overview of semantics zeitgeist. ⚫ Other formal descriptions. ⚫ Fascination with Algol: why? ⚫ Postscript; quote from Wittgenstein in Algol 60 Report. 3 Short History of Algol 60 ⚫ Conference in Zurich 1958 ⚫ Preliminary Report: Algol 58/IAL, Comm ACM ⚫ Informal meeting in Mainz Nov. 1958 prompted: ⚫ Algol implementation conference (40) Copenhagen Feb. 1959: “hardware group” (character sets, input eqp) ⚫ Algol Bulletin ed. Peter Naur Regnecentralen Copenhagen 1959-88, 52 issues: discussion forum ⚫ European Algol conference Paris Nov. 1959 (c50): 4 January 1960 Conference 7 European representatives ⚫ Association Française de Calcul ⚫ British Computer Society ⚫ Gesellschaft für Angewandte Mathematik und Mechanik (GAMM) ⚫ Nederlands Rekenmachine Genootschap ⚫ (Learned Societies for Computer Science in Europe) 5 USA Contributions ⚫ Algol working groups on ACM Committee on Programming Languages ⚫ 7 representatives to Jan. 1960 conference after preparatory meeting in Boston Dec.1959 ⚫ (William Turanski killed in road accident just before Jan. 60 conference) ⚫ New draft Report developed from Preliminary Report, formed basis of Revised Report at Jan. 60 conference ⚫ Finally conference in Rome April 1962 to correct, eliminate ambiguities, clarify; ed.
    [Show full text]
  • Discovery of Two Historical Computers in Switzerland: Zuse
    Discovery of Two Historical Computers in Switzerland: Zuse Machine M9 and Contraves Cora and Discovery of Unknown Documents on the Early History of Computing at the ETH Archives Herbert Bruderer Swiss Federal Institute of Technology, Zurich [email protected], [email protected] Abstract. Since 2009 we have been trying to find out more about the beginnings of computer science in Switzerland and abroad. Most eyewitnesses have already died or are over 80 years old. In general, early analog and digital computers have been dismantled long ago. Subject to exceptions, the few remaining devices are no longer functioning. Many documents have gone lost. Therefore investigations are difficult and very time-consuming. However, we were able to discover several unknown historical computers and hundreds of exciting documents of the 1950s. In 2012, the results have been published in a first book; a second volume will be forthcoming next year. Keywords: Cora, ERMETH, ETH archives, Hasler AG, Heinz Rutishauser, Konrad Zuse, M9 (=Z9), Mithra AG, Paillard SA, Remington Rand AG, Unesco, Z4. 1 Introduction My investigations into the history of computing started in 2009 in connection with the Zuse centenary (100th birthday of the German computer pioneer in 2010). The goal was to get a more comprehensive and deeper understanding of the events of the pioneering days. Coincidentally and to our surprise we discovered the program- controlled Zuse relay calculator M9 whose existence was unknown even to computer scientists. Shortly afterwards another machine emerged: the Swiss made transistor computer Cora. From 2010 to 2013 several contemporary eyewitness discussions concerning M9 and Cora took place.
    [Show full text]
  • The Future of Mathematical Software
    The Future of Mathematical Software Ulrich H. Kortenkamp Institut f¨urInformatik Freie Universit¨atBerlin Takustr. 9 D-14195 Berlin 1 Introduction This article gives my very personal view of the development of (mathe- matical) software in the past and in the future. It is based both on my experiences as a user and as an author of math software [1], and also as a non-software-using mathematician. This is not a real mathematical article. Probably the conclusions of this article could also be applied to completely different types of software, not even necessarily scientific software. Try it. Nevertheless, it is a mathematical article, since I would like to call mathematicians all over the world to participate in the process of creat- ing better tools for communicating mathematics. It is our chance to change the way mathematics is perceived by non-mathematicians or early students, it is the chance to teach more and understand more. Instead of filling this article with lots of figures and pictures I decided to add links to many relevant web sites. This gives all the necessary illustrations without having to worry about copyright issues. You should consider reading the online version with clickable hyperlinks. I will start by trying to identify what I call the “Ten Year Cycle of Software Innovation,” which will almost automatically ask for the next innovations that will come. Then I try to spot at least a few requirements that I consider essential for the future. For the rest of this article, “ten years” almost always means “more or less ten years.” 2 The Ten Year Cycle Let us look back in the development of mathematical software.
    [Show full text]
  • Numerical Analysis in Zurich – 50 Years Ago
    2 Martin H. Gutknecht is a professor and senior scientist at ETH Zurich. He was also Scientific Director of the Swiss Center for Scientific Computing (CSCS/SCSC). Numerical Analysis in Zurich – 50 Years Ago Surely, applied mathematics originated in ancient gathering of this sort ever – as an opportunity to times and slowly matured through the centuries, recall some of the local contributions. We focus on but it started to blossom colorfully only when those in numerical analysis and scientific comput- electronic computers became available in the late ing, but we will also touch computers, computer 1940s and early 1950s. This was the gold miner’s languages, and compilers. time of computer builders and numerical analysts. Responsible for establishing (electronic) The venue was not the far west of the United scientific computing in Switzerland was primarily States, but rather some places in its eastern part, Eduard Stiefel (1909–1978): he took the initiative, such as Boston, Princeton, Philadelphia, and New raised the money, hired the right people, directed York, and also places in Europe, most notably, the projects, and, last but not least, made his own Manchester, Amsterdam, and Zurich. Only long lasting contributions to pure and applied math- after these projects had begun did it become ematics. Stiefel got his Dr. sc. math. from ETH in known that the electronic computer had been 1935 with a dissertation on Richtungsfelder und invented earlier by clever individuals: 1937–1939 Fernparallelismus in n-dimensionalen Mannig- by John V. Atanasoff and his gradute student faltigkeiten written under the famous Heinz Hopf. Clifford Berry at Iowa State College, Ames, Iowa, It culminated in the introduction of the Stiefel and, independently, 1935–1941 by Konrad Zuse in (-Whitney) classes, certain characteristic classes Berlin.
    [Show full text]
  • Grundprogramme
    Departement Informatik Zuse’s relay calculator Z4 used for Swiss fighter jet P-16 Zuse’s legendary relay calculator Z4 was the first computer used at a university in continental Eu- rope, and P-16 was the first airworthy jet fighter developed in Switzerland. The Zuse Z4 was in operation at the main building of the Swiss Federal Institute of Technology Zurich (ETH Zurich) from 1950 to 1955. The war plane P-16 was designed by the Flug- und Fahrzeugwerke Altenrhein (FFA) on Lake Constance (Eastern Switzerland). The Z4 was utilized for top secret flutter calcula- tions. With 920 hours of machine time FFA was the most important client of Z4. The professors responsible for the flutter calculations were Urs Hochstrasser (ETH Zurich and Berne University) and Hans-Rudolf Schwarz (ETH Zurich and Zurich University). Herbert Bruderer The changeful history of the first airworthy Swiss jet fighter P-16 was very dramatic. The airplane was designed and built for Swiss Air Force by the private aircraft company Flug- und Fahrzeug- werke Altenrhein (FFA) on Lake Constance near the Austrian and the German border. The senior population living in the region recalls the exciting events of that time: flights with sonic boom, crash into Lake Constance, rescue of the pilot thanks to the ejection seat, and finally the annulation of the purchase order of the P-16 by Swiss parliament, which was indeed a serious mistake. The legendary relay calculator Zuse Z4 computes the Swiss jet fighter P-16 Only very few historians of computing know that the legendary Zuse ma- chine Z4, in operation at the main building of the Swiss Federal Institute of Technology Zurich (ETH Zurich) from 1950 to 1955, was involved in the flutter calculations for the jet fighter P-16.
    [Show full text]
  • Ganderlatsis Rutishauser
    My years with Rutishauser By Friedrich L. Bauer, TU Munich February 19, 1952 Heinz Rutishauser (1918-1970), who died far too early, was one of my very best friends; among the professionals of my age class that I became aquainted with in the fifties, he ranks in one line with Klaus Samelson (1918-1980), my Munich study colleague, and with Jim Wilkinson (1919-1986). Rutishauser gave a seminal lecture entitled Automatische Rechenplanfertigung bei programmgesteuerten ” Rechenmaschinen“ at the GaMM meeting in Freiburg in Breisgau, at the end of March, 1951, which I missed — I was still assistent of Fritz Bopp, the University of Munich Theoretical Physicist, successor of the famous Arnold Sommerfeld. I became aware of the lecture when it was published mid-1952 as an ETH-Mitteilung. Therefore, when I met Heinz Rutishauser in February 1952 for the first time, I was absolutely ignorant about his success, and we did not talk about the subject. It just happens that we met on February 19, 1952; tomorrow it will be 50 years ago. You may ask yourself, how our cooperation developed. It happened via Konrad Zuse and Eduard Stiefel. In 1949 — June 27, to be precise — Zuse had presented in the seminar of Wilhelm Britzlmayr (1892– 1970), logician and Honorary Professor (whose regular occupation was director of a bank) at the Ludwig- Maximilians-Universitat¨ in Munich a report on his ’Plankalkul¨ ’. Britzlmayr, who found out that I was interested in the topic and who had kindred relations in Switzerland, kept me informed from time to time on the further development, and mentioned one day that in July 1949 a professor at the ETH Zurich¨ had signed a contract to rent Zuse’s relay calculator »’Z4’, and that in August 1950 the machine was operational.
    [Show full text]