Transcriptomic Responses in Mouse Blood During the First Week After In

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptomic Responses in Mouse Blood During the First Week After In www.nature.com/scientificreports OPEN Transcriptomic responses in mouse blood during the frst week after in vivo gamma irradiation Sunirmal Paul1, Norman J. Kleiman 2 & Sally A. Amundson 1* Due to limitations of available human models for development of gene expression based radiation biodosimetry, many such studies have made use of mouse models. To provide a broad view of the gene expression response to irradiation in the mouse, we have exposed male C57BL/6 mice to 0, 1.5, 3, 6 or 10 Gy of gamma rays, sacrifcing groups of the mice at 1, 2, 3, 5, or 7 days after exposure. We then profled global gene expression in blood from individual mice using Agilent microarrays. In general, we found increasing numbers of genes diferentially expressed with increasing dose, with more prolonged responses after the higher doses. Gene ontology analysis showed a similar pattern, with more biological processes enriched among the genes responding to higher doses, and at later times after exposure. Clustering the timecourse expression data using maSigPro identifed four broad patterns of response, representing diferent gene ontology functions. The largest of these clusters included genes with initially decreased expression followed by increased expression at later times, a pattern of expression previously reported for several genes following neutron exposure. Another gene cluster showing consistent down regulation suggests genes useful for biodosimetry throughout the frst week after exposure can be identifed. Tere continues to be worldwide concern about potential human health risks to large populations from radiation exposure afer a nuclear accident or terrorist incident; e.g., detonation of a “dirty bomb” or an improvised nuclear device. Current research is directed at developing both radiation countermeasures and methods using biomark- ers to better quantify which individuals might best beneft from therapeutic interventions1–4. Biodosimetry approaches range from improving and automating classical cytogenetic methods5,6 to developing novel methods based on high-content screening, such as transcriptomics, proteomics, and metabolomics7–10. Our group, and others, have focused on the development of transcriptomic signatures derived from whole blood, a highly radiation responsive tissue requiring minimally invasive collection methods. Some studies have used human material, mainly blood from patients undergoing total body irradiation (TBI) prior to bone mar- row transplantation11–14, or blood from healthy donors irradiated ex vivo15–20. Te TBI model is limited by clin- ical irradiation protocols, which provide a narrow range of doses, usually delivered in several fractions, and by concerns that at a molecular level, the radiation response of extremely ill patients does not accurately refect that of healthy individuals. While ex vivo irradiation of blood drawn from healthy donors provides fexibility in the doses studied, this model only partially recapitulates the in vivo response11,13, and the blood has a limited useful lifetime in culture21. Te elapsed time afer exposure is an important consideration for the development of transcriptomics-based radiation signatures, as gene expression changes in response to irradiation are highly dynamic22. Much biodosimetry signature development has therefore used mouse models to provide in vivo responses at a range of doses and exposure times12,14,23–27, however, most such studies reporting whole-genome expression data have focused on limited post-irradiation time points. Here we report the frst broad analysis of whole-genome gene expression in the blood of mice during the frst week afer exposure to gamma radiation doses from 0–10 Gy. Te study covers the initiation of biological responses and the time period of most interest for radiation biodosimetry or triage. While the data themselves will be useful for signature development, this paper focuses on the temporal patterns of gene expression response and the nature of the biological and molecular functions implied by the patterns of gene expression change. Te 1Center for Radiological Research, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA. 2Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA. *email: [email protected] SCIENTIFIC REPORTS | (2019) 9:18364 | https://doi.org/10.1038/s41598-019-54780-0 1 www.nature.com/scientificreports/ www.nature.com/scientificreports Days post irradiation 1.5 Gy 3 Gy 6 Gy 10 Gy 1 97 (75%)* 1337 (65%) 1462 (56%) 1308 (45%) 2 271 (18%) 4482 (42%) 5671 (35%) 5526 (40%) 3 86 (42%)* 4950 (39%) 7506 (44%) 8181 (45%) 5 488 (92%) 1648 (50%) 5706 (43)% 8763 (42%) 7 14 (29%)* 540 (34%) 3623 (39%) 8871 (40%) Table 1. Diferentially expressed genes by dose and time. Te number of genes signifcantly diferentially expressed relative to time matched controls at the level of p < 0.001 at each dose and time is listed along with the percentage of up-regulated genes, which is given in parentheses. *All genes had a false discovery rate below 5%, with the exception of the groups marked with an asterisk. See Supplementary File 1 for full gene lists. Figure 1. Heatmap of the expression of the 381 genes (rows) that were signifcantly diferentially expressed throughout the frst week afer exposure to any of the doses of radiation tested. Intensity of expression in individual mice (columns) was measured by microarray and is indicated according to the color scale, with light cyan representing the lowest level of expression, and dark blue the highest level of expression. Grey indicates an expression level not signifcantly above the microarray background. Te annotated list of genes in clustered order is available in Supplementary File 2. study provides a foundation for further studies of the role of gene expression changes during the frst week of response afer exposure to a range of sub-lethal and lethal doses of ionizing radiation. Results Diferential gene expression in mouse blood after irradiation. Te numbers of genes diferentially expressed at each sacrifce time (1, 2, 3, 5, or 7 days) and γ-ray dose (1.5, 3, 6, and 10 Gy), along with their false discovery rate (FDR), are summarized in Table 1. Te full gene lists with statistics and fold-change data are availa- ble in Supplementary File 1. Of these genes, we found that 381 were diferentially expressed at all times measured within a week afer exposure to at least one of the doses tested (Fig. 1). Since gene expression measurements made from whole blood refect the response of multiple cell types with diferent radiation sensitivities, some researchers have isolated specifc lymphocyte subtypes for the develop- ment of radiation biodosimetry signatures28,29. We have chosen to work with whole blood in part to reduce the pre-processing steps that would be needed to bring an assay to the point of care. Tis does mean that the gene expression changes we fnd may be partially driven by changes in the relative mixture of cell types in circulation afer diferent times and exposure doses. We used Cibersort30 to deconvolute our gene expression data and esti- mate the relative abundance of diferent cell subtypes. Te cell-type signatures used in Cibersort are based only on gene expression data from non-irradiated cells, however, and cannot distinguish between changes in cell numbers and functional changes during the response to radiation. Nonetheless, Cibersort indicated a dose-dependent depression in the representation of naïve B cells throughout the experiment, compensated to some extent by an increase in the inferred number of macrophages afer exposure (Supplementary File 1). As biomarkers of radi- ation efects are developed it may be of interest to further pursue the cellular source of the signals through cell sorting experiments. Gene ontology analysis. We used the PANTHER Statistical Overrepresentation Test31 to identify biological processes that were signifcantly enriched (p < 0.05 with the fairly stringent Bonferroni correction for multiple comparisons) within the sets of up- or down-regulated genes at the various times afer irradiation. Te patterns of signifcant enrichment of biological processes among genes responding to 3, 6 or 10 Gy γ-rays are summa- rized in Fig. 2 as a function of time since exposure, with the actual processes listed in Supplementary File 2. No SCIENTIFIC REPORTS | (2019) 9:18364 | https://doi.org/10.1038/s41598-019-54780-0 2 www.nature.com/scientificreports/ www.nature.com/scientificreports Figure 2. Gene Ontology analysis of diferentially expressed genes. PANTHER was used to identify signifcantly over-represented GO-Slim biological processes (rows) among (A) up- or (B) down-regulated genes at 1, 2, 3, 5, or 7 days afer exposure to 3, 6, or 10 Gy gamma radiation. Each column represents a dose and time combination. To illustrate the patterns of response among biological processes, the cells are colour coded by p-value as shown in the key. Related processes have been grouped together in the marked regions: (a) metabolic processes, (b) transport/localization, (c) adhesion/movement, (d) mitochondrial processes, (e) signalling/ communication, (f) immune response, (g) cell cycle, (h) cell death, (i) diferentiation/development. Details including the process names and p-values are available in Supplementary File 2. signifcantly enriched biological processes were found among the genes responding to 1.5 Gy γ-rays. We found many of the same processes enriched among the genes responding to the three higher doses, but with a shif in the timing of the perturbation dependent on dose. Tis included many processes related to metabolism among the up-regulated genes, and functions such as signal transduction, immune system process, and cell cycle among down-regulated genes. In general, the perturbation of processes was more quickly resolved afer lower doses and more prolonged afer the higher doses. Functions related to cell death only appeared as signifcantly enriched afer doses of 6 Gy and above, possibly due to the stringency of the multiple comparison correction applied in the analysis.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Predicting FOXM1-Mediated Gene Regulation Through the Analysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines
    International Journal of Molecular Sciences Article Predicting FOXM1-Mediated Gene Regulation through the Analysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines 1, , 2, 1 3,4 Keunsoo Kang * y, Yoonjung Choi y, Hoo Hyun Kim , Kyung Hyun Yoo and Sungryul Yu 5,* 1 Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; [email protected] 2 Deargen Inc., Daejeon 34051, Korea; [email protected] 3 Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; [email protected] 4 Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea 5 Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea * Correspondence: [email protected] (K.K.); [email protected] (S.Y.); Tel.: +82-41-550-3456 (K.K.); +82-43-649-1418 (S.Y.) These authors contributed equally to the work. y Received: 22 June 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: Forkhead box protein M1 (FOXM1) is a key transcription factor (TF) that regulates a common set of genes related to the cell cycle in various cell types. However, the mechanism by which FOXM1 controls the common gene set in different cellular contexts is unclear. In this study, a comprehensive meta-analysis of genome-wide FOXM1 binding sites in ECC-1, GM12878, K562, MCF-7, and SK-N-SH cell lines was conducted to predict FOXM1-driven gene regulation. Consistent with previous studies, different TF binding motifs were identified at FOXM1 binding sites, while the NFY binding motif was found at 81% of common FOXM1 binding sites in promoters of cell cycle-related genes.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • 187093439.Pdf
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Apollo M BoC | ARTICLE Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein–protein interactions Georg H. H. Bornera, Marco Y. Heina,*, Jennifer Hirstb,*, James R. Edgarb, Matthias Manna, and Margaret S. Robinsonb aDepartment of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; bCambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom ABSTRACT We developed “fractionation profiling,” a method for rapid proteomic analysis Monitoring Editor of membrane vesicles and protein particles. The approach combines quantitative proteomics Adam Linstedt with subcellular fractionation to generate signature protein abundance distribution profiles. Carnegie Mellon University Functionally associated groups of proteins are revealed through cluster analysis. To validate Received: Jul 8, 2014 the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin- Revised: Aug 6, 2014 coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins fromDrosophila Accepted: Aug 7, 2014 S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin- coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale pro- tein interaction maps.
    [Show full text]
  • Accepted By:- Signature Redacted Department of Biology Graduate Co-Chair: Michael T
    EXPLORING THE FUNCTIONAL CONSERVATION OF MUSCLEBLIND (MBL) PROTEINS by MASSACH USETTS INSTITUTE Julia C. Oddo d o ECHNOLOGY B.S. Molecular, Cellular, and Developmental Biology, SE 1 7 2015 Minor Biochemistry 2011 LIB RARIES SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN BIOLOGY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2015 C 2015 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Auth or:_ Department of Biology May 22, 2015 Certified by: Signature redacte Thesis Supervisor: Chris B. Burge Professor of Biology and Biological Engineering Director Program CSB Certified by: Signature redactec Thesis Co-Supervisor: Eric T. Wang Research Fellow Accepted by:- Signature redacted Department of Biology Graduate Co-Chair: Michael T. Hemann Associate Professor of Biology 1 EXPLORING THE FUNCTIONAL CONSERVATION OF MUSCLEBLIND (MBL) PROTEINS by Julia C. Oddo Submitted to the Department of Biology on September 8th, 2015 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology ABSTRACT Muscleblind (Mbl) is an evolutionarily conserved family of proteins involved in many aspects of RNA metabolism, including alternative splicing. Disruption of Muscleblind in several animals lends to a variety of defects and disease, including the multi-systemic disorder Myotonic Dystrophy (DM). Though much is known about the involvement of Muscleblind in DM, there is much basic knowledge of the protein's function to be discovered.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Role of Fzr1 in Embryogenesis
    ROLE OF FZR1 IN EMBRYOGENESIS SEAH KAY YI MICHELLE BSC. (HONS I) PH.D THESIS Statement of Originality This thesis contains no material which has been accepted for the award for any other Degree or Diploma in any University or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968. Seah Kay Yi Michelle 17th December 2012 Page | ii Acknowledgements I would like to sincerely express my appreciation and gratitude to my supervisors, Keith and Janet for giving me this opportunity and to share their wisdom and guidance throughout my PhD. I would also like to extend my thanks to all the lab members including Evan, Jess, Julie, Kyra, Nicole, Phoebe, Simon, Sophia, Suzanne and Yan. Thank you for your company and help throughout my PhD, it has made this an enjoyable experience in the lab. To my family especially Popo, Mummy and Daddy, thank you for the endless love, support and understanding that you have showered upon me. For that, I will be eternally grateful. Thank you for moulding me into the person that I am today, for without all of you, I will not be where I am today. I love you and will always be your little girl. To Clara, my BFF, thank you for your encouragements and to always be there for me.
    [Show full text]
  • Loss of the Mammalian APC/C Activator FZR1 Shortens G1 and Lengthens S Phase but Has Little Effect on Exit from Mitosis
    4208 Research Article Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis Reinhard Sigl1, Cornelia Wandke1, Veronika Rauch1, Jane Kirk2, Tim Hunt2 and Stephan Geley1,* 1Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria 2Clare Hall Laboratories, Cancer Research UK, South Mimms, England, UK *Author for correspondence ([email protected]) Accepted 10 September 2009 Journal of Cell Science 122, 4208-4217 Published by The Company of Biologists 2009 doi:10.1242/jcs.054197 Summary The anaphase-promoting complex/cyclosome (APC/C) is knockdown of p53 in U2OS cells with inducible FZR1 siRNA essential for progression through mitosis. At anaphase onset, also failed to restore their proliferative capacity. Thus, the the APC/C requires the activator protein CDC20 to target proliferation defects are a direct consequence of the genetic securin and cyclin B1 for proteasome-dependent degradation, damage inflicted by loss of FZR1 function and are largely but then depends on the CDC20-related protein FZR1 (also independent of p53. In summary, mammalian FZR1 is not known as CDH1) to remain active until the onset of the next S required for the completion of mitosis, but is an important phase. To investigate the role of FZR1 in mammalian cells, we regulator of G1 phase and is required for efficient DNA used RNAi in human cell lines and conditional gene targeting replication in human and mouse somatic cells. in mouse embryonic fibroblasts. In neither case was FZR1 required for exit from mitosis, but in cells lacking FZR1, the Supplementary material available online at G1 phase was shortened and the S phase was prolonged.
    [Show full text]
  • Chromosome Abnormalities in Two Patients with Features of Autosomal Dominant Robinow Syndrome
    ß 2007 Wiley-Liss, Inc. American Journal of Medical Genetics Part A 143A:1790–1795 (2007) Research Letter Chromosome Abnormalities in Two Patients With Features of Autosomal Dominant Robinow Syndrome Juliana F. Mazzeu,1 Ana Cristina Krepischi-Santos,1 Carla Rosenberg,1 Karoly Szuhai,2 Jeroen Knijnenburg,2 Janneke M.M. Weiss,3 Irina Kerkis,1 Zan Mustacchi,4 Guilherme Colin,5 Roˆmulo Mombach,6 Rita de Ca´ssia M. Pavanello,1 Paulo A. Otto,1 and Angela M. Vianna-Morgante1* 1Centro de Estudos do Genoma Humano, Departamento de Gene´tica e Biologia Evolutiva, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil 2Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands 3Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands 4Hospital Infantil Darcy Vargas, Sa˜o Paulo, Brazil 5Departamento de Gene´tica Me´dica, Univille, Joinville, Brazil 6Centrinho Prefeito Luiz Gomes, Secretaria Municipal de Sau´de, Joinville, Brazil Received 13 April 2006; Accepted 13 December 2006 How to cite this article: Mazzeu JF, Krepischi-Santos AC, Rosenberg C, Szuhai K, Knijnenburg J, Weiss JMM, Kerkis I, Mustacchi Z, Colin G, Mombach R, Pavanello RM, Otto PA, Vianna-Morgante AM. 2007. Chromosome abnormalities in two patients with features of autosomal dominant Robinow syndrome. Am J Med Genet Part A 143A:1790–1795. To the Editor: Patient 1 Robinow syndrome [OMIM 180700] is characteriz- At age 3 4/12 years the girl was diagnosed as ed by fetal facies, mesomelic dwarfism, and hypo- affected by DRS (Fig. 1A). Detailed clinical examina- plastic genitalia.
    [Show full text]
  • Comparison of Gene Expression Response to Neutron and X-Ray Irradiation Using Mouse Blood Constantinos G
    Broustas et al. BMC Genomics (2017) 18:2 DOI 10.1186/s12864-016-3436-1 RESEARCHARTICLE Open Access Comparison of gene expression response to neutron and x-ray irradiation using mouse blood Constantinos G. Broustas1, Yanping Xu2, Andrew D. Harken2, Guy Garty2 and Sally A. Amundson1* Abstract Background: In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. Results: Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals.
    [Show full text]
  • Genome-Wide Methylation Study on Depression: Differential Methylation and Variable Methylation in Monozygotic Twins
    OPEN Citation: Transl Psychiatry (2015) 5, e557; doi:10.1038/tp.2015.49 www.nature.com/tp ORIGINAL ARTICLE Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins A Córdova-Palomera1,2, M Fatjó-Vilas1,2, C Gastó2,3,4, V Navarro2,3,4, M-O Krebs5,6,7 and L Fañanás1,2 Depressive disorders have been shown to be highly influenced by environmental pathogenic factors, some of which are believed to exert stress on human brain functioning via epigenetic modifications. Previous genome-wide methylomic studies on depression have suggested that, along with differential DNA methylation, affected co-twins of monozygotic (MZ) pairs have increased DNA methylation variability, probably in line with theories of epigenetic stochasticity. Nevertheless, the potential biological roots of this variability remain largely unexplored. The current study aimed to evaluate whether DNA methylation differences within MZ twin pairs were related to differences in their psychopathological status. Data from the Illumina Infinium HumanMethylation450 Beadchip was used to evaluate peripheral blood DNA methylation of 34 twins (17 MZ pairs). Two analytical strategies were used to identify (a) differentially methylated probes (DMPs) and (b) variably methylated probes (VMPs). Most DMPs were located in genes previously related to neuropsychiatric phenotypes. Remarkably, one of these DMPs (cg01122889) was located in the WDR26 gene, the DNA sequence of which has been implicated in major depressive disorder from genome-wide association studies. Expression of WDR26 has also been proposed as a biomarker of depression in human blood. Complementarily, VMPs were located in genes such as CACNA1C, IGF2 and the p38 MAP kinase MAPK11, showing enrichment for biological processes such as glucocorticoid signaling.
    [Show full text]
  • Phosphorylation of the Anaphase Promoting Complex
    www.nature.com/scientificreports OPEN Phosphorylation of the Anaphase Promoting Complex activator FZR1/CDH1 is required for Meiosis II entry in mouse male germ cell Nobuhiro Tanno1,2, Shinji Kuninaka2, Sayoko Fujimura3, Kazumasa Takemoto1, Kaho Okamura1, Naoki Takeda4, Kimi Araki4,5, Masatake Araki4, Hideyuki Saya2 & Kei-ichiro Ishiguro1 ✉ FZR1/CDH1 is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of FZR1 during mitotic cell cycle. Although the critical role of FZR1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological signifcance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of FZR1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK- phosphorylation sites of FZR1. Although ablation of FZR1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of FZR1 phosphorylation, male juvenile germ cells entered meiosis normally but failed to enter meiosis II or form diferentiated spermatids. In aged testis, male mutant germ cells were overall abolished, showing Sertoli cell-only phenotype. In contrast, female mutants showed apparently normal progression of meiosis. The present study demonstrated that phosphorylation of FZR1 is required for temporal regulation of APC/C activity at meiosis II entry, and for maintenance of spermatogonia, which raised an insight into the sexual dimorphism of FZR1-regulation in germ cells. Anaphase promoting complex/Cyclosome (APC/C) controls timely transitions of mitotic cell cycle phases by pro- moting ubiquitylation and degradation of many key cell cycle regulators1.
    [Show full text]