Music Genre Classification Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M.Sc. RESEARCH THESIS LARGE-SCALE MUSIC
LARGE-SCALE MUSIC CLASSIFICATION USING AN APPROXIMATE k-NN CLASSIFIER Haukur Pálmason Master of Science Computer Science January 2011 School of Computer Science Reykjavík University M.Sc. RESEARCH THESIS ISSN 1670-8539 Large-Scale Music Classification using an Approximate k-NN Classifier by Haukur Pálmason Research thesis submitted to the School of Computer Science at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science January 2011 Research Thesis Committee: Dr. Björn Þór Jónsson, Supervisor Associate Professor, Reykjavík University, Iceland Dr. Laurent Amsaleg Research Scientist, IRISA-CNRS, France Dr. Yngvi Björnsson Associate Professor, Reykjavík University, Iceland Copyright Haukur Pálmason January 2011 Large-Scale Music Classification using an Approximate k-NN Classifier Haukur Pálmason January 2011 Abstract Content based music classification typically uses low-level feature vectors of high-dimensionality to represent each song. Since most classification meth- ods used in the literature do not scale well, the number of such feature vec- tors is usually reduced in order to save computational time. Approximate k-NN classification, on the other hand, is very efficient and copes better with scale than other methods. It can therefore be applied to more feature vec- tors within a given time limit, potentially resulting in better quality. In this thesis, we first demonstrate the effectiveness and efficiency of approximate k-NN classification through a traditional genre classification task, achieving very respectable accuracy in a matter of minutes. We then apply the approx- imate k-NN classifier to a large-scale collection of more than thirty thousand songs. We show that, through an iterative process, the classification con- verges relatively quickly to a stable state. -
Multimodal Deep Learning for Music Genre Classification
Oramas, S., Barbieri, F., Nieto, O., and Serra, X (2018). Multimodal Transactions of the International Society for Deep Learning for Music Genre Classification, Transactions of the Inter- Music Information Retrieval national Society for Music Information Retrieval, V(N), pp. xx–xx, DOI: https://doi.org/xx.xxxx/xxxx.xx ARTICLE TYPE Multimodal Deep Learning for Music Genre Classification Sergio Oramas,∗ Francesco Barbieri,y Oriol Nieto,z and Xavier Serra∗ Abstract Music genre labels are useful to organize songs, albums, and artists into broader groups that share similar musical characteristics. In this work, an approach to learn and combine multimodal data representations for music genre classification is proposed. Intermediate rep- resentations of deep neural networks are learned from audio tracks, text reviews, and cover art images, and further combined for classification. Experiments on single and multi-label genre classification are then carried out, evaluating the effect of the different learned repre- sentations and their combinations. Results on both experiments show how the aggregation of learned representations from different modalities improves the accuracy of the classifica- tion, suggesting that different modalities embed complementary information. In addition, the learning of a multimodal feature space increase the performance of pure audio representa- tions, which may be specially relevant when the other modalities are available for training, but not at prediction time. Moreover, a proposed approach for dimensionality reduction of target labels yields major improvements in multi-label classification not only in terms of accuracy, but also in terms of the diversity of the predicted genres, which implies a more fine-grained categorization. Finally, a qualitative analysis of the results sheds some light on the behavior of the different modalities in the classification task. -
Pynchon's Sound of Music
Pynchon’s Sound of Music Christian Hänggi Pynchon’s Sound of Music DIAPHANES PUBLISHED WITH SUPPORT BY THE SWISS NATIONAL SCIENCE FOUNDATION 1ST EDITION ISBN 978-3-0358-0233-7 10.4472/9783035802337 DIESES WERK IST LIZENZIERT UNTER EINER CREATIVE COMMONS NAMENSNENNUNG 3.0 SCHWEIZ LIZENZ. LAYOUT AND PREPRESS: 2EDIT, ZURICH WWW.DIAPHANES.NET Contents Preface 7 Introduction 9 1 The Job of Sorting It All Out 17 A Brief Biography in Music 17 An Inventory of Pynchon’s Musical Techniques and Strategies 26 Pynchon on Record, Vol. 4 51 2 Lessons in Organology 53 The Harmonica 56 The Kazoo 79 The Saxophone 93 3 The Sounds of Societies to Come 121 The Age of Representation 127 The Age of Repetition 149 The Age of Composition 165 4 Analyzing the Pynchon Playlist 183 Conclusion 227 Appendix 231 Index of Musical Instruments 233 The Pynchon Playlist 239 Bibliography 289 Index of Musicians 309 Acknowledgments 315 Preface When I first read Gravity’s Rainbow, back in the days before I started to study literature more systematically, I noticed the nov- el’s many references to saxophones. Having played the instru- ment for, then, almost two decades, I thought that a novelist would not, could not, feature specialty instruments such as the C-melody sax if he did not play the horn himself. Once the saxophone had caught my attention, I noticed all sorts of uncommon references that seemed to confirm my hunch that Thomas Pynchon himself played the instrument: McClintic Sphere’s 4½ reed, the contra- bass sax of Against the Day, Gravity’s Rainbow’s Charlie Parker passage. -
The National Harmonica League Harmonicauk
formerly- The National Harmonica League HarmonicaUK Registered Charity (England and Wales) No. 1131484 http://www.harmonica.co.uk - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Chairman Ben Hewlett +447973 284366 [email protected] Treasurer Phil Leiwy +447979 648007 [email protected] Membership Secretary David Hambley [email protected] 7 Ingleborough Way, Leyland, Lancs, PR25 4ZS, UK +447757 215047 Editor Dave Taylor +44797 901 1106 [email protected] Chromatic Davina Brazier Education Dick Powell / Eva Hurt Publicity Sam Wilkinson Secretary Dave Taylor Tremolo Simon Joy Health Rollen Flood Archivist Roger Trobridge +44771 2671940 [email protected] President Paul Jones Patrons Lee Sankey, Brendan Power, Adam Glasser US Vice President (vacancy) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Harmonica World is published every two months, and is the magazine for members of HarmonicaUK ( formerly- National Harmonica League ). Any views expressed might not be the o!cial views of HarmonicaUK. All material in this magazine is copyrighted, and may not be reproduced without the prior consent of the Editor. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Cover: Apr - May 2020 design by Dave Taylor Welcome to HARMONICA WORLD Magazine... _____________________________________________________________________________-_______________________________________________________________________________ -
Music Genre Classification
Music Genre Classification Michael Haggblade Yang Hong Kenny Kao 1 Introduction Music classification is an interesting problem with many applications, from Drinkify (a program that generates cocktails to match the music) to Pandora to dynamically generating images that comple- ment the music. However, music genre classification has been a challenging task in the field of music information retrieval (MIR). Music genres are hard to systematically and consistently describe due to their inherent subjective nature. In this paper, we investigate various machine learning algorithms, including k-nearest neighbor (k- NN), k-means, multi-class SVM, and neural networks to classify the following four genres: clas- sical, jazz, metal, and pop. We relied purely on Mel Frequency Cepstral Coefficients (MFCC) to characterize our data as recommended by previous work in this field [5]. We then applied the ma- chine learning algorithms using the MFCCs as our features. Lastly, we explored an interesting extension by mapping images to music genres. We matched the song genres with clusters of images by using the Fourier-Mellin 2D transform to extract features and clustered the images with k-means. 2 Our Approach 2.1 Data Retrieval Process Marsyas (Music Analysis, Retrieval, and Synthesis for Audio Signals) is an open source software framework for audio processing with specific emphasis on Music Information Retrieval Applica- tions. Its website also provides access to a database, GTZAN Genre Collection, of 1000 audio tracks each 30 seconds long. There are 10 genres represented, each containing 100 tracks. All the tracks are 22050Hz Mono 16-bit audio files in .au format [2]. -
California State University, Northridge Where's The
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE WHERE’S THE ROCK? AN EXAMINATION OF ROCK MUSIC’S LONG-TERM SUCCESS THROUGH THE GEOGRAPHY OF ITS ARTISTS’ ORIGINS AND ITS STATUS IN THE MUSIC INDUSTRY A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Arts in Geography, Geographic Information Science By Mark T. Ulmer May 2015 The thesis of Mark Ulmer is approved: __________________________________________ __________________ Dr. James Craine Date __________________________________________ __________________ Dr. Ronald Davidson Date __________________________________________ __________________ Dr. Steven Graves, Chair Date California State University, Northridge ii Acknowledgements I would like to thank my committee members and all of my professors at California State University, Northridge, for helping me to broaden my geographic horizons. Dr. Boroushaki, Dr. Cox, Dr. Craine, Dr. Davidson, Dr. Graves, Dr. Jackiewicz, Dr. Maas, Dr. Sun, and David Deis, thank you! iii TABLE OF CONTENTS Signature Page .................................................................................................................... ii Acknowledgements ............................................................................................................ iii LIST OF FIGURES AND TABLES.................................................................................. vi ABSTRACT ..................................................................................................................... viii Chapter 1 – Introduction .................................................................................................... -
Ethnomusicology a Very Short Introduction
ETHNOMUSICOLOGY A VERY SHORT INTRODUCTION Thimoty Rice Sumário Chapter 1 – Defining ethnomusicology...........................................................................................4 Ethnos..........................................................................................................................................5 Mousikē.......................................................................................................................................5 Logos...........................................................................................................................................7 Chapter 2 A bit of history.................................................................................................................9 Ancient and medieval precursors................................................................................................9 Exploration and enlightenment.................................................................................................10 Nationalism, musical folklore, and ethnology..........................................................................10 Early ethnomusicology.............................................................................................................13 “Mature” ethnomusicology.......................................................................................................15 Chapter 3........................................................................................................................................17 Conducting -
Fabian Holt. 2007. Genre in Popular Music. Chicago and London: University of Chicago Press
Fabian Holt. 2007. Genre in Popular Music. Chicago and London: University of Chicago Press. Reviewed by Elizabeth K. Keenan The concept of genre has often presented difficulties for popular music studies. Although discussions of genres and their boundaries frequently emerge from the ethnographic study of popular music, these studies often fail to theorize the category of genre itself, instead focusing on elements of style that demarcate a localized version of a particular genre. In contrast, studies focusing on genre itself often take a top-down, Adorno-inspired, culture-industry perspective, locating the concept within the marketing machinations of the major-label music industry. Both approaches have their limits, leaving open numerous questions about how genres form and change over time; how people employ the concept of genre in their musical practices-whether listening, purchasing, or performing; and how culture shapes our construction of genre categories. In Genre in Popular Music, Fabian Holt deftly integrates his theoretical model of genre into a series of ethnographic and historical case studies from both the center and the boundaries of popular music in the United States. These individual case studies, from reactions to Elvis Presley in Nashville to a portrait of the lesser known Chicago jazz and rock musician Jeff Parker, enable Holt to develop a multifaceted theory of genre that takes into consideration how discourse and practice, local experience and translocal circulation, and industry and individuals all shape popular music genres in the United States. This book is a much needed addition to studies of genre, as well as a welcome invitation to explore more fully the possibilities for doing ethnography in American popular music studies. -
Genre Classification Via Album Cover
Genre Classification via Album Cover Jonathan Li Di Sun Department of Computer Science Department of Computer Science Stanford University Stanford University [email protected] [email protected] Tongxin Cai Department of Civil and Environmental Engineering Stanford University [email protected] Abstract Music information retrieval techniques are being used in recommender systems and automatically categorize music. Research in music information retrieval often focuses on textual or audio features for genre classification. This paper takes a direct look at the ability of album cover artwork to predict album genre and expands upon previous work in this area. We use transfer learning with VGG-16 to improve classifier performance. Our work results in an increase in our topline metrics, area under the precision recall curve, of 80%: going from 0.315 to 0.5671, and precision and recall increasing from 0.694 and 0.253 respectively to 0.7336 and 0.3812 respectively. 1 Introduction Genre provides information and topic classification in music. Additionally, the vast majority of music is written collaboratively and with several influences, which leads to multi-label (multi-genres) albums, i.e., a song and its album cover may belong to more than one genre. Music genre classification, firstly introduced by Tzanetakis et al [18] in 2002 as a pattern recognition task, is one of the many branches of Music Information Retrieval (MIR). From here, other tasks on musical data, such as music generation, recommendation systems, instrument recognition and so on, can be performed. Nowadays, companies use music genre classification, either to offer recommendations to their users (such as iTunes, Spotify) or simply as a product (for example Shazam). -
Genre, Form, and Medium of Performance Terms in Music Cataloging
Genre, Form, and Medium of Performance Terms in Music Cataloging Ann Shaffer, University of Oregon [email protected] OLA 2015 Pre-Conference What We’ll Cover • New music vocabularies for LC Genre & Form and LC Medium of Performance Terms • Why were they developed? • How to use them in cataloging? • What does it all mean? Genre, Form, & MoP in LCSH Music Terms When describing music materials, LCSH have often blurred the distinction between: • Subject what the work is about • Genre what the work is • Form the purpose or format of the work • Medium of performance what performing forces the work requires Genre, Form, & MoP in LCSH Music Terms Book Music Score • LCSH describe what • LCSH describe what the musical work is: subject the book is Symphonies about: Operas Symphony Bluegrass music Opera Waltzes Bluegrass music • LCSH also describe what the format is: Rap (music) $v Scores and parts $v Vocal scores $v Fake books Waltz • And what the medium of performance is: Sonatas (Cello and piano) Banjo with instrumental ensemble String quartets Genre, Form, & MoP in LCSH Music Terms Audio Recording • LCSH describes what the musical work is: Popular music Folk music Flamenco music Concertos • And what the medium of performance is: Songs (High voice) with guitar Jazz ensembles Choruses (Mens’ voices, 4 parts) with piano Concertos (Tuba with string orchestra) Why Is This Problematic? • Machines can’t distinguish between topic, form, genre, and medium of performance in the LCSH • All coded in same field (650) • Elements of headings & subdivisions -
You Can Judge an Artist by an Album Cover: Using Images for Music Annotation
You Can Judge an Artist by an Album Cover: Using Images for Music Annotation Janis¯ L¯ıbeks Douglas Turnbull Swarthmore College Department of Computer Science Swarthmore, PA 19081 Ithaca College Email: [email protected] Ithaca, NY 14850 Email: [email protected] Abstract—While the perception of music tends to focus on our acoustic listening experience, the image of an artist can play a role in how we categorize (and thus judge) the artistic work. Based on a user study, we show that both album cover artwork and promotional photographs encode valuable information that helps place an artist into a musical context. We also describe a simple computer vision system that can predict music genre tags based on content-based image analysis. This suggests that we can automatically learn some notion of artist similarity based on visual appearance alone. Such visual information may be helpful for improving music discovery in terms of the quality of recommendations, the efficiency of the search process, and the aesthetics of the multimedia experience. Fig. 1. Illustrative promotional photos (left) and album covers (right) of artists with the tags pop (1st row), hip hop (2nd row), metal (3rd row). See I. INTRODUCTION Section VI for attribution. Imagine that you are at a large summer music festival. appearance. Such a measure is useful, for example, because You walk over to one of the side stages and observe a band it allows us to develop a novel music retrieval paradigm in which is about to begin their sound check. Each member of which a user can discover new artists by specifying a query the band has long unkempt hair and is wearing black t-shirts, image. -
Multi-Label Music Genre Classification from Audio, Text, and Images Using Deep Features
MULTI-LABEL MUSIC GENRE CLASSIFICATION FROM AUDIO, TEXT, AND IMAGES USING DEEP FEATURES Sergio Oramas1, Oriol Nieto2, Francesco Barbieri3, Xavier Serra1 1Music Technology Group, Universitat Pompeu Fabra 2Pandora Media Inc. 3TALN Group, Universitat Pompeu Fabra fsergio.oramas, francesco.barbieri, [email protected], [email protected] ABSTRACT exclusive (i.e., a song could be Pop, and at the same time have elements from Deep House and a Reggae grove). In Music genres allow to categorize musical items that share this work we aim to advance the field of music classifi- common characteristics. Although these categories are not cation by framing it as multi-label genre classification of mutually exclusive, most related research is traditionally fine-grained genres. focused on classifying tracks into a single class. Further- To this end, we present MuMu, a new large-scale mul- more, these categories (e.g., Pop, Rock) tend to be too timodal dataset for multi-label music genre classification. broad for certain applications. In this work we aim to ex- MuMu contains information of roughly 31k albums clas- pand this task by categorizing musical items into multiple sified into one or more 250 genre classes. For every al- and fine-grained labels, using three different data modal- bum we analyze the cover image, text reviews, and audio ities: audio, text, and images. To this end we present tracks, with a total number of approximately 147k audio MuMu, a new dataset of more than 31k albums classified tracks and 447k album reviews. Furthermore, we exploit into 250 genre classes. For every album we have collected this dataset with a novel deep learning approach to learn the cover image, text reviews, and audio tracks.